R Under development (unstable) (2024-06-17 r86768 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(epigrowthfit) > options(warn = 2L, error = if (interactive()) recover) > example("egf", package = "epigrowthfit"); o.1 <- m1; o.2 <- m2 egf> ## Simulate 'N' incidence time series exhibiting exponential growth egf> set.seed(180149L) egf> N <- 10L egf> f <- function(time, r, c0) { egf+ lambda <- diff(exp(log(c0) + r * time)) egf+ c(NA, rpois(lambda, lambda)) egf+ } egf> time <- seq.int(0, 40, 1) egf> r <- rlnorm(N, -3.2, 0.2) egf> c0 <- rlnorm(N, 6, 0.2) egf> data_ts <- egf+ data.frame(country = gl(N, length(time), labels = LETTERS[1:N]), egf+ time = rep.int(time, N), egf+ x = unlist(Map(f, time = list(time), r = r, c0 = c0))) egf> rm(f, time) egf> ## Define fitting windows (here, two per time series) egf> data_windows <- egf+ data.frame(country = gl(N, 1L, 2L * N, labels = LETTERS[1:N]), egf+ wave = gl(2L, 10L), egf+ start = c(sample(seq.int(0, 5, 1), N, TRUE), egf+ sample(seq.int(20, 25, 1), N, TRUE)), egf+ end = c(sample(seq.int(15, 20, 1), N, TRUE), egf+ sample(seq.int(35, 40, 1), N, TRUE))) egf> ## Estimate the generative model egf> m1 <- egf+ egf(model = egf_model(curve = "exponential", family = "pois"), egf+ formula_ts = cbind(time, x) ~ country, egf+ formula_windows = cbind(start, end) ~ country, egf+ formula_parameters = ~(1 | country:wave), egf+ data_ts = data_ts, egf+ data_windows = data_windows, egf+ se = TRUE) computing a Hessian matrix ... egf> ## Re-estimate the generative model with: egf> ## * Gaussian prior on beta[1L] egf> ## * LKJ prior on all random effect covariance matrices egf> ## (here there happens to be just one) egf> ## * initial value of 'theta' set explicitly egf> ## * theta[3L] fixed at initial value egf> m2 <- egf+ update(m1, egf+ formula_priors = list(beta[1L] ~ Normal(mu = -3, sigma = 1), egf+ Sigma ~ LKJ(eta = 2)), egf+ init = list(theta = c(log(0.5), log(0.5), 0)), egf+ map = list(theta = 3L)) computing a Hessian matrix ... > > > ## object ############################################################## > > o.1s <- summary(o.1) > o.1f <- fitted(o.1, class = TRUE, se = TRUE) > stopifnot(exprs = { + is.list(o.1s) + identical(oldClass(o.1s), "summary.egf") + length(o.1s) == 5L + identical(names(o.1s), c("fitted", "convergence", "value", "gradient", "hessian")) + identical(o.1s[["convergence"]], o.1[["optimizer_out"]][["convergence"]]) + identical(o.1s[["value"]], o.1[["value"]]) + identical(o.1s[["gradient"]], o.1[["gradient"]]) + identical(o.1s[["hessian"]], o.1[["hessian"]]) + all.equal(o.1s[["fitted"]], simplify2array(c(tapply(o.1f[["value"]], o.1f[["top"]], summary)))) + }) > > > ## print ############################################################### > > vv <- withVisible(print(o.1s)) Fitted values .......................................................... log(r) log(c0) Min. -3.280004 5.569983 1st Qu. -3.180285 6.026158 Median -3.127046 6.347277 Mean -3.094246 6.418744 3rd Qu. -3.006118 6.773228 Max. -2.818894 7.424955 Negative log marginal likelihood ....................................... convergence 0 value 1.032019e+03 range(abs(gradient)) 5.675084e-05 1.625871e-03 pos. def. Hessian TRUE > stopifnot(exprs = { + identical(vv[["value"]], o.1s) + identical(vv[["visible"]], FALSE) + }) > > proc.time() user system elapsed 4.87 0.31 5.15