R Under development (unstable) (2024-06-17 r86768 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(epigrowthfit) > library(methods) > options(warn = 2L, error = if (interactive()) recover) > example("egf", package = "epigrowthfit"); o.1 <- m1; o.2 <- m2 egf> ## Simulate 'N' incidence time series exhibiting exponential growth egf> set.seed(180149L) egf> N <- 10L egf> f <- function(time, r, c0) { egf+ lambda <- diff(exp(log(c0) + r * time)) egf+ c(NA, rpois(lambda, lambda)) egf+ } egf> time <- seq.int(0, 40, 1) egf> r <- rlnorm(N, -3.2, 0.2) egf> c0 <- rlnorm(N, 6, 0.2) egf> data_ts <- egf+ data.frame(country = gl(N, length(time), labels = LETTERS[1:N]), egf+ time = rep.int(time, N), egf+ x = unlist(Map(f, time = list(time), r = r, c0 = c0))) egf> rm(f, time) egf> ## Define fitting windows (here, two per time series) egf> data_windows <- egf+ data.frame(country = gl(N, 1L, 2L * N, labels = LETTERS[1:N]), egf+ wave = gl(2L, 10L), egf+ start = c(sample(seq.int(0, 5, 1), N, TRUE), egf+ sample(seq.int(20, 25, 1), N, TRUE)), egf+ end = c(sample(seq.int(15, 20, 1), N, TRUE), egf+ sample(seq.int(35, 40, 1), N, TRUE))) egf> ## Estimate the generative model egf> m1 <- egf+ egf(model = egf_model(curve = "exponential", family = "pois"), egf+ formula_ts = cbind(time, x) ~ country, egf+ formula_windows = cbind(start, end) ~ country, egf+ formula_parameters = ~(1 | country:wave), egf+ data_ts = data_ts, egf+ data_windows = data_windows, egf+ se = TRUE) computing a Hessian matrix ... egf> ## Re-estimate the generative model with: egf> ## * Gaussian prior on beta[1L] egf> ## * LKJ prior on all random effect covariance matrices egf> ## (here there happens to be just one) egf> ## * initial value of 'theta' set explicitly egf> ## * theta[3L] fixed at initial value egf> m2 <- egf+ update(m1, egf+ formula_priors = list(beta[1L] ~ Normal(mu = -3, sigma = 1), egf+ Sigma ~ LKJ(eta = 2)), egf+ init = list(theta = c(log(0.5), log(0.5), 0)), egf+ map = list(theta = 3L)) computing a Hessian matrix ... > > > ## object ############################################################## > > o.1p <- profile(o.1, A = NULL, + top = "log(r)", subset = quote(country == "A" & wave == 1)) Profile value: 1032.019 Profile value: 1032.051 Profile value: 1032.317 Profile value: 1032.555 Profile value: 1032.7 Profile value: 1032.863 Profile value: 1032.951 Profile value: 1033.042 Profile value: 1033.138 Profile value: 1033.238 Profile value: 1033.342 Profile value: 1033.45 Profile value: 1033.562 Profile value: 1033.677 Profile value: 1033.796 Profile value: 1033.918 Profile value: 1034.043 Profile value: 1032.019 Profile value: 1032.05 Profile value: 1032.28 Profile value: 1032.469 Profile value: 1032.58 Profile value: 1032.701 Profile value: 1032.831 Profile value: 1032.971 Profile value: 1033.119 Profile value: 1033.274 Profile value: 1033.437 Profile value: 1033.521 Profile value: 1033.607 Profile value: 1033.694 Profile value: 1033.782 Profile value: 1033.873 Profile value: 1033.964 > stopifnot(exprs = { + is.list(o.1p) + identical(oldClass(o.1p), c("profile.egf", "profile")) + length(o.1p) == 1L + identical(names(o.1p), "log(r), A, window_01") + identical(dim(o.1p), c(1L, 1L)) + identical(dimnames(o.1p), list("A, window_01", "log(r)")) + + is.list(o.1p[[1L]]) + identical(oldClass(o.1p[[1L]]), "data.frame") + length(o.1p[[1L]]) == 2L + identical(names(o.1p[[1L]]), c("z", "par.vals")) + + is.double(z <- o.1p[[1L]][["z"]]) + !is.matrix(z) + min(abs(z)) == 0 + prod(sign(range(z))) == -1 + + is.double(par.vals <- o.1p[[1L]][["par.vals"]]) + is.matrix(par.vals) + ncol(par.vals) == 1L # for now + !is.unsorted(par.vals, strictly = TRUE) + par.vals[which.min(abs(z))] == coef(o.1)[1L] + + is.factor (attr(o.1p, "top" )) + is.factor (attr(o.1p, "ts" )) + is.factor (attr(o.1p, "window")) + is.data.frame(attr(o.1p, "frame" )) + is (attr(o.1p, "A" ), "dgCMatrix") + is.double (attr(o.1p, "par" )) + identical (attr(o.1p, "level" ), 0.95) + }) > > > ## confint ############################################################# > > o.1pc <- confint(o.1p, level = 0.95, class = TRUE) > n <- length(o.1p) > > stopifnot(exprs = { + is.list(o.1pc) + identical(oldClass(o.1pc), c("confint.egf", "data.frame")) + length(o.1pc) == 5L + identical(names(o.1pc), c("top", "ts", "window", "value", "ci")) + + all(vapply(o.1pc[c("top", "ts", "window")], is.factor, FALSE)) + all(vapply(o.1pc[c("value", "ci" )], is.double, FALSE)) + + is.vector(o.1pc[["value"]]) + is.matrix(o.1pc[["ci"]]) + identical(dim(o.1pc[["ci"]]), c(1L, 2L)) + identical(dimnames(o.1pc[["ci"]]), list(NULL, c("2.5 %", "97.5 %"))) + all(o.1pc[["ci"]][, 1L] < o.1pc[["value"]]) + all(o.1pc[["ci"]][, 2L] > o.1pc[["value"]]) + }) > > > ## parallel ############################################################ > > f <- + function(method, cores) + profile(o.1, A = NULL, + top = "log(r)", subset = quote(country == "A" & wave == 1), + parallel = egf_parallel(method = method, cores = cores)) > > windows <- .Platform[["OS.type"]] == "windows" > stopifnot(exprs = { + all.equal(o.1p, f("multicore", if (windows) 1L else 2L)) + all.equal(o.1p, f("snow", 2L)) + }) Profile value: 1032.019 Profile value: 1032.051 Profile value: 1032.317 Profile value: 1032.555 Profile value: 1032.7 Profile value: 1032.863 Profile value: 1032.951 Profile value: 1033.042 Profile value: 1033.138 Profile value: 1033.238 Profile value: 1033.342 Profile value: 1033.45 Profile value: 1033.562 Profile value: 1033.677 Profile value: 1033.796 Profile value: 1033.918 Profile value: 1034.043 Profile value: 1032.019 Profile value: 1032.05 Profile value: 1032.28 Profile value: 1032.469 Profile value: 1032.58 Profile value: 1032.701 Profile value: 1032.831 Profile value: 1032.971 Profile value: 1033.119 Profile value: 1033.274 Profile value: 1033.437 Profile value: 1033.521 Profile value: 1033.607 Profile value: 1033.694 Profile value: 1033.782 Profile value: 1033.873 Profile value: 1033.964 starting worker pid=39580 on localhost:11599 at 05:52:09.279 starting worker pid=47792 on localhost:11599 at 05:52:09.281 Profile value: 1032.019 Profile value: 1032.051 Profile value: 1032.317 Profile value: 1032.555 Profile value: 1032.7 Profile value: 1032.863 Profile value: 1032.951 Profile value: 1033.042 Profile value: 1033.138 Profile value: 1033.238 Profile value: 1033.342 Profile value: 1033.45 Profile value: 1033.562 Profile value: 1033.677 Profile value: 1033.796 Profile value: 1033.918 Profile value: 1034.043 Profile value: 1032.019 Profile value: 1032.05 Profile value: 1032.28 Profile value: 1032.469 Profile value: 1032.58 Profile value: 1032.701 Profile value: 1032.831 Profile value: 1032.971 Profile value: 1033.119 Profile value: 1033.274 Profile value: 1033.437 Profile value: 1033.521 Profile value: 1033.607 Profile value: 1033.694 Profile value: 1033.782 Profile value: 1033.873 Profile value: 1033.964 > > > ## plot ################################################################ > > plot(o.1p, type = "z^2", bty = "u", las = 1) > > proc.time() user system elapsed 25.68 0.46 39.07