library(epigrowthfit) options(warn = 2L, error = if (interactive()) recover) ## excess ############################################################## r <- log(2) / 20 tinfl <- 100 K <- 25000 b <- 10 disp <- 50 zz <- simulate(egf_model(curve = "logistic", family = "nbinom", excess = TRUE), nsim = 1L, seed = 366465L, mu = log(c(r, tinfl, K, b, disp)), cstart = 10) mm <- egf(zz, formula_priors = list(log(b) ~ Normal(mu = 2.5, sigma = 1))) stopifnot(all.equal(coef(zz), coef(mm), tolerance = 5e-02))