test_that("COPD incidence is set so that prevalence is independent of calendar year within GOLD and gender stratas", { settings <- get_default_settings() settings$record_mode <- epicR:::session_env$record_mode["record_mode_event"] init_session(settings = settings) run() data <- as.data.frame(get_all_events_matrix()) terminate_session() dataF <- data[which(data[, "event"] == 1), ] #1 is event_fixed dataF[, "age"] <- dataF[, "local_time"] + dataF[, "age_at_creation"] dataF[, "copd"] <- (dataF[, "gold"] > 0) * 1 dataF[, "gold2p"] <- (dataF[, "gold"] > 1) * 1 dataF[, "gold3p"] <- (dataF[, "gold"] > 2) * 1 dataF[, "year"] <- dataF[, "local_time"] + dataF[, "time_at_creation"] res <- glm(data = dataF[which(dataF[, "female"] == 0), ], formula = copd ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.02) res <- glm(data = dataF[which(dataF[ "female"] == 1), ], formula = copd ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.02) res <- glm(data = dataF[which(dataF[, "female"] == 0), ], formula = gold2p ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.02) res <- glm(data = dataF[which(dataF[, "female"] == 1), ], formula = gold2p ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.02) # For GOLD stage III and IV, the sample size is small and higher error is expected. res <- glm(data = dataF[which(dataF[, "female"] == 0), ], formula = gold3p ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.07) res <- glm(data = dataF[which(dataF[, "female"] == 1), ], formula = gold3p ~ age + pack_years + smoking_status + year, family = binomial(link = logit)) expect_lt (coefficients(res)[5], 0.07) })