test_that("factor outcome - factor predictor", { class_test <- recipe(x2 ~ ., data = ex_dat) |> step_lencode(x3, outcome = vars(x2), smooth = FALSE, id = "id") |> prep(training = ex_dat, retain = TRUE) tr_values <- bake(class_test, new_data = NULL)$x3 new_values <- bake(class_test, new_data = new_dat) expect_snapshot( new_values_ch <- bake(class_test, new_data = new_dat_ch) ) key <- class_test$steps[[1]]$mapping td_obj <- tidy(class_test, number = 1) expect_equal("x3", names(key)) expect_equal( length(unique(ex_dat$x3)) + 1, nrow(key$x3) ) expect_true(sum(key$x3$..level == "..new") == 1) expect_true(is.numeric(tr_values)) expect_equal( new_values$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_ch$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_ch$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values_ch$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( td_obj$level, key$x3$..level ) expect_equal( td_obj$value, key$x3$..value ) new_values }) test_that("factor outcome - character predictor", { class_test <- recipe(x2 ~ ., data = ex_dat_ch) |> step_lencode(x3, outcome = vars(x2), smooth = FALSE) |> prep(training = ex_dat_ch, retain = TRUE) tr_values <- bake(class_test, new_data = NULL)$x3 expect_snapshot( new_values <- bake(class_test, new_data = new_dat_ch) ) new_values_fc <- bake(class_test, new_data = new_dat) key <- class_test$steps[[1]]$mapping td_obj <- tidy(class_test, number = 1) expect_equal("x3", names(key)) expect_equal( length(unique(ex_dat$x3)) + 1, nrow(key$x3) ) expect_true(sum(key$x3$..level == "..new") == 1) expect_true(is.numeric(tr_values)) expect_equal( new_values$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_fc$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_fc$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values_fc$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( td_obj$level, key$x3$..level ) expect_equal( td_obj$value, key$x3$..value ) unseen_level <- data.frame( x1 = 0, x2 = factor("a", levels = c("a", "b")), x3 = "unseen-level", x4 = factor("A", levels = c("A", "B", "C", "D", "E")) ) expect_equal( bake(class_test, unseen_level)$x3, 0 ) }) test_that("numeric outcome - factor predictor", { reg_test <- recipe(x1 ~ ., data = ex_dat) |> step_lencode(x3, outcome = vars(x1)) |> prep(training = ex_dat, retain = TRUE) tr_values <- bake(reg_test, new_data = NULL)$x3 new_values <- bake(reg_test, new_data = new_dat) expect_snapshot( new_values_ch <- bake(reg_test, new_data = new_dat_ch) ) td_obj <- tidy(reg_test, number = 1) key <- reg_test$steps[[1]]$mapping expect_equal("x3", names(key)) expect_equal( length(unique(ex_dat$x3)) + 1, nrow(key$x3) ) expect_true(sum(key$x3$..level == "..new") == 1) expect_true(is.numeric(tr_values)) expect_equal( new_values$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_ch$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_ch$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values_ch$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( td_obj$level, key$x3$..level ) expect_equal( td_obj$value, key$x3$..value ) }) test_that("numeric outcome - character predictor", { reg_test <- recipe(x1 ~ ., data = ex_dat_ch) |> step_lencode(x3, outcome = vars(x1)) |> prep(training = ex_dat_ch, retain = TRUE) tr_values <- bake(reg_test, new_data = NULL)$x3 new_values <- bake(reg_test, new_data = new_dat_ch) new_values_fc <- bake(reg_test, new_data = new_dat) key <- reg_test$steps[[1]]$mapping td_obj <- tidy(reg_test, number = 1) expect_equal("x3", names(key)) expect_equal( length(unique(ex_dat$x3)) + 1, nrow(key$x3) ) expect_true(sum(key$x3$..level == "..new") == 1) expect_true(is.numeric(tr_values)) expect_equal( new_values$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_fc$x3[1], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( new_values_fc$x3[2], key$x3$..value[key$x3$..level == levels(ex_dat$x3)[1]] ) expect_equal( new_values_fc$x3[3], key$x3$..value[key$x3$..level == "..new"] ) expect_equal( td_obj$level, key$x3$..level ) expect_equal( td_obj$value, key$x3$..value ) unseen_level <- data.frame( x1 = 0, x2 = factor("a", levels = c("a", "b")), x3 = "unseen-level", x4 = factor("A", levels = c("A", "B", "C", "D", "E")) ) expect_equal( bake(reg_test, unseen_level)$x3, mean(ex_dat_ch$x1) ) }) test_that("non occurring events doesn't result in infinities", { data <- data.frame( outcome = c("a", "a", "b", "b"), predictor = c("a", "a", "a", "b") ) res <- recipe(outcome ~ ., data = data) |> step_lencode(predictor, outcome = vars(outcome), smooth = FALSE) |> prep() |> tidy(1) exp <- c( log(2 / 3 / (1 - 2 / 3)), log( (2 * nrow(data) - 1) / (2 * nrow(data)) / (1 - (2 * nrow(data) - 1) / (2 * nrow(data))) ), log(0.5 / (1 - 0.5)) ) expect_identical(res$value, exp) expect_identical(res$level, c("a", "b", "..new")) }) test_that("non occurring events doesn't result in infinities - case weights", { data <- data.frame( outcome = c("a", "a", "b", "b"), predictor = c("a", "a", "a", "b"), wts = importance_weights(rep(1, 4)) ) res <- recipe(outcome ~ ., data = data) |> step_lencode(predictor, outcome = vars(outcome), smooth = FALSE) |> prep() |> tidy(1) exp <- c( log(2 / 3 / (1 - 2 / 3)), log( (2 * nrow(data) - 1) / (2 * nrow(data)) / (1 - (2 * nrow(data) - 1) / (2 * nrow(data))) ), log(0.5 / (1 - 0.5)) ) expect_identical(res$value, exp) expect_identical(res$level, c("a", "b", "..new")) }) test_that("bad args", { three_class <- iris three_class$fac <- rep(letters[1:3], 50) three_class$logical <- rep(c(TRUE, FALSE), 75) expect_snapshot( error = TRUE, recipe(Species ~ ., data = three_class) |> step_lencode(Sepal.Length, outcome = vars(Species)) |> prep(training = three_class, retain = TRUE) ) expect_snapshot( error = TRUE, recipe(Species ~ ., data = three_class) |> step_lencode(Species, outcome = vars(logical)) |> prep(training = three_class, retain = TRUE) ) }) test_that("case weights", { wts_int <- rep(c(0.9, 1), times = c(100, 400)) ex_dat_cw <- ex_dat |> mutate(wts = importance_weights(wts_int)) class_test <- recipe(x2 ~ ., data = ex_dat_cw) |> step_lencode(x3, outcome = vars(x2), smooth = FALSE, id = "id") |> prep(training = ex_dat_cw, retain = TRUE) ref_mod <- glm( x2 ~ 0 + x3, data = ex_dat_cw, family = binomial, na.action = na.omit, weights = ex_dat_cw$wts ) inf_estimate_p <- (2 * nrow(ex_dat_cw) - 1) / (2 * nrow(ex_dat_cw)) inf_estimate_log_odds <- log(inf_estimate_p / (1 - inf_estimate_p)) exp <- tibble( ..level = names(coef(ref_mod)), ..value = unname(coef(ref_mod)) ) |> mutate( ..level = gsub("^x3", "", ..level), ..value = -..value, ..value = if_else(abs(..value) < 0.0001, 0, ..value), ..value = if_else( abs(round(..value, 0.4)) == max(abs(round(..value, 0.4))), inf_estimate_log_odds, ..value ) ) |> arrange(..level) res <- slice_head(class_test$steps[[1]]$mapping$x3, n = -1) |> arrange(..level) expect_equal( res, exp, tolerance = 0.00001 ) expect_snapshot(class_test) }) # Infrastructure --------------------------------------------------------------- test_that("bake method errors when needed non-standard role columns are missing", { rec <- recipe(x2 ~ ., data = ex_dat) |> step_lencode(x3, outcome = vars(x2), smooth = FALSE) |> update_role(x3, new_role = "potato") |> update_role_requirements(role = "potato", bake = FALSE) rec_trained <- prep(rec, training = ex_dat, verbose = FALSE) expect_snapshot( error = TRUE, bake(rec_trained, new_data = ex_dat[, -3]) ) }) test_that("empty printing", { rec <- recipe(mpg ~ ., mtcars) rec <- step_lencode(rec, outcome = vars(mpg)) expect_snapshot(rec) rec <- prep(rec, mtcars) expect_snapshot(rec) }) test_that("empty selection prep/bake is a no-op", { rec1 <- recipe(mpg ~ ., mtcars) rec2 <- step_lencode(rec1, outcome = vars(mpg)) rec1 <- prep(rec1, mtcars) rec2 <- prep(rec2, mtcars) baked1 <- bake(rec1, mtcars) baked2 <- bake(rec2, mtcars) expect_identical(baked1, baked2) }) test_that("empty selection tidy method works", { rec <- recipe(mpg ~ ., mtcars) rec <- step_lencode(rec, outcome = vars(mpg)) expect <- tibble( terms = character(), level = character(), value = double(), id = character() ) expect_identical(tidy(rec, number = 1), expect) rec <- prep(rec, mtcars) expect_identical(tidy(rec, number = 1), expect) }) test_that("printing", { rec <- recipe(x1 ~ ., data = ex_dat_ch) |> step_lencode(x3, outcome = vars(x1)) expect_snapshot(print(rec)) expect_snapshot(prep(rec)) })