test_that("the parameter checking is working as expected", { set.seed(42) data <- ehyclus_example_data() curves <- data$curves vars_combinations <- data$vars_combinations # Empty list in 'l_method_hierarch' expect_error( EHyClus(curves, vars_combinations, l_method_hierarch = c()) ) # Non-valid argument in 'l_dist_hierarch' expect_error( EHyClus(curves, vars_combinations, l_dist_hierarch = c("euclidean", "i_do_not_exist")) ) # 'vars_combinations' not being a list expect_error( EHyClus(curves, unlist(vars_combinations)) ) }) test_that("the checking related to 'vars_combinations' is doing its work", { set.seed(42) data <- ehyclus_example_data() curves <- data$curves vars_wrong_name <- list(c("dtaEI", "ddtaET", "d2dtaEI")) vars_singular <- list(c("dtaEI", "ddtaEI", "d2dtaEI")) vars_wrong_and_correct <- list(c("dtaEI", "ddtaET", "d2dtaEI"), c("dtaEI", "dtaMEI")) # The case with only one variable should throw a warning but still works # expect_warning(EHyClus(curves = curves, vars_combinations = vars_but_only_one)) # TODO Error: unable to find an inherited method for function 'affinMult' for signature 'kernel = "rbfkernel", x = "numeric"' # same happening sometimes in "the 'n_clusters' parameter is working as expected" # Both the case with wrong names and with a singular (or almost singular) # matrix should throw an error expect_error( suppressWarnings(EHyClus(curves = curves, k = 10, vars_combinations = vars_wrong_name)) ) expect_error( suppressWarnings(EHyClus(curves = curves, k = 10, vars_combinations = vars_singular)) ) # Also, an empty list should throw an error expect_error( suppressWarnings(EHyClus(curves = curves, k = 10, vars_combinations = list())) ) # As one of the vars combinations is correct but there is also one incorrect, # this should work but a warning is expected expect_warning(EHyClus(curves = curves, k = 10, vars_combinations = vars_wrong_and_correct)) }) test_that("the 'n_clusters' parameter is working as expected", { set.seed(42) data <- ehyclus_example_data(n = 10) curves <- data$curves vars_combinations <- data$vars_combinations res <- EHyClus(curves, vars_combinations = vars_combinations, n_clusters = 3) expect_equal( max(res$cluster[[1]][[1]]$cluster), 3 ) }) test_that("the 'n_cores' parameter is not breaking anything", { set.seed(42) data <- ehyclus_example_data(n = 10) curves <- data$curves vars_combinations <- data$vars_combinations expect_no_error(EHyClus(curves, vars_combinations = vars_combinations, n_cores = 2)) }) test_that("metrics are correctly created when 'true_labels' is given to 'EHyClus'", { n <- 100 labels <- rep(c(1, 2), each = n) vars1 <- c("dtaMEI", "ddtaMEI") vars2 <- c("dtaMEI", "d2dtaMEI") curves <- sim_model_ex2(n = n) res <- EHyClus(curves, vars_combinations = list(vars1, vars2), true_labels = labels) expect_equal(names(res), c("cluster", "metrics")) expect_equal(dim(res$metrics), c(32, 5)) }) test_that("the 'generic_vars_combinations' is returning an object of the expected lenght", { curves_unidimensional <- sim_model_ex2(i_sim = 1) vars_combinations_unidimensional <- generic_vars_combinations(length(dim(curves_unidimensional)) == 3) expect_length(vars_combinations_unidimensional, 18) curves_multidimensional <- sim_model_ex2(i_sim = 3) vars_combinations_multidimensional <- generic_vars_combinations(length(dim(curves_multidimensional)) == 3) expect_length(vars_combinations_multidimensional, 15) }) test_that("the 'EHyClus' function works without providing 'vars_combinations'", { curves <- sim_model_ex2(n = 5, i_sim = 3) res <- EHyClus(curves) vars_combinations <- attr(res, "vars_combinations") expect_length(vars_combinations, 15) }) test_that("the 'only_best' parameter works", { set.seed(32) n <- 5 labels <- rep(c(1, 2), each = n) vars1 <- c("dtaMEI", "ddtaMEI") vars2 <- c("dtaMEI", "d2dtaMEI") curves <- sim_model_ex2(n = n) res <- EHyClus(curves, vars_combinations = list(vars1, vars2), true_labels = labels, only_best = TRUE ) expect_equal(dim(res$metrics), c(1, 5)) expect_equal(length(res$cluster), 1) }) test_that("the 'auto' value for vars_combinations works as expected", { set.seed(33) data <- ehyclus_example_data(n = 10) curves <- data$curves res_auto <- EHyClus(curves, vars_combinations = "auto") # Check that the result has the expected structure expect_type(res_auto, "list") expect_named(res_auto, "cluster") # Check that vars_combinations attribute exists and has length 1 vars_auto <- attr(res_auto, "vars_combinations") expect_true(!is.null(vars_auto)) expect_length(vars_auto, 1) # Should be a list with one combination # Check that the selected variables are character vectors expect_type(vars_auto[[1]], "character") })