* using log directory 'd:/RCompile/CRANincoming/R-devel/edgemodelr.Rcheck' * using R Under development (unstable) (2025-08-30 r88742 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * checking for file 'edgemodelr/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'edgemodelr' version '0.1.0' * package encoding: UTF-8 * checking CRAN incoming feasibility ... NOTE Maintainer: 'Pawan Rama Mali ' New submission Possibly misspelled words in DESCRIPTION: GGUF (8:73) GPT (9:6) * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'edgemodelr' can be installed ... WARNING Found the following significant warnings: D:/rtools45/x86_64-w64-mingw32.static.posix/lib/gcc/x86_64-w64-mingw32.static.posix/14.2.0/include/c++/bits/regex.h:1922:55: warning: array subscript -3 is outside array bounds of 'std::__cxx11::sub_match [384307168202282325]' [-Warray-bounds=] D:/rtools45/x86_64-w64-mingw32.static.posix/lib/gcc/x86_64-w64-mingw32.static.posix/14.2.0/include/c++/bits/regex.h:1922:55: warning: array subscript -3 is outside array bounds of 'std::__cxx11::sub_match [384307168202282325]' [-Warray-bounds=] See 'd:/RCompile/CRANincoming/R-devel/edgemodelr.Rcheck/00install.out' for details. * used C++ compiler: 'g++.exe (GCC) 14.2.0' * checking C++ specification ... OK * checking installed package size ... OK * checking package directory ... OK * checking for future file timestamps ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking whether startup messages can be suppressed ... OK * checking use of S3 registration ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking use of SHLIB_OPENMP_*FLAGS in Makefiles ... OK * checking pragmas in C/C++ headers and code ... OK * checking compilation flags used ... OK * checking compiled code ... OK * checking examples ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... [221s] ERROR Running 'testthat.R' [220s] Running the tests in 'tests/testthat.R' failed. Complete output: > library(testthat) > library(edgemodelr) > > test_check("edgemodelr") Model file not found: does_not_exist.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: dummy.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: dummy.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: dummy.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: dummy.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() gguf_init_from_file_impl: invalid magic characters: 'This', expected 'GGUF' llama_model_load: error loading model: llama_model_loader: failed to load model from D:\RCompile\CRANincoming\R-devel\edgemodelr.Rcheck\tests\testthat\fake_model.gguf llama_model_load_from_file_impl: failed to load model Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: clearly_nonexistent_file_xyz123.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent1.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent2.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent3.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent4.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent5.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent6.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent7.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent8.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent9.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent10.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent11.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent12.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent13.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent14.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent15.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent16.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent17.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent18.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent19.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent20.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: fake.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Running on: Windows x86-64 Model file not found: nonexistent_model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() gguf_init_from_file: failed to open GGUF file 'D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m' llama_model_load: error loading model: llama_model_loader: failed to load model from D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m llama_model_load_from_file_impl: failed to load model gguf_init_from_file_impl: invalid magic characters: 'not ', expected 'GGUF' llama_model_load: error loading model: llama_model_loader: failed to load model from D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m\file10de04c34da.txt llama_model_load_from_file_impl: failed to load model Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: testmodel.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test:model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test"model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test|model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test?model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test*model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: test_中文.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() gguf_init_from_file_impl: invalid magic characters: '????', expected 'GGUF' llama_model_load: error loading model: llama_model_loader: failed to load model from D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m\file10de0678732c5.bin llama_model_load_from_file_impl: failed to load model Created cache directory: D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m/test_cache_dir_12345 Downloading model... From: https://huggingface.co/fake/model/resolve/main/fake.gguf To: D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m/test_cache_dir_12345/fake.gguf trying URL 'https://huggingface.co/fake/model/resolve/main/fake.gguf' Download method auto failed: cannot open URL 'https://huggingface.co/fake/model/resolve/main/fake.gguf' % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 29 100 29 0 0 209 0 --:--:-- --:--:-- --:--:-- 211 100 29 100 29 0 0 209 0 --:--:-- --:--:-- --:--:-- 211 --2025-08-31 19:45:43-- https://huggingface.co/fake/model/resolve/main/fake.gguf Loaded CA certificate '/usr/ssl/certs/ca-bundle.crt' Resolving huggingface.co (huggingface.co)... 52.222.136.89, 52.222.136.92, 52.222.136.117, ... Connecting to huggingface.co (huggingface.co)|52.222.136.89|:443... connected. HTTP request sent, awaiting response... 401 Unauthorized Username/Password Authentication Failed. Download method wget failed: 'wget' call had nonzero exit status trying URL 'https://huggingface.co/fake/model/resolve/main/fake.gguf' Download method wininet failed: cannot open URL 'https://huggingface.co/fake/model/resolve/main/fake.gguf' Download failed. Possible solutions: 1. Check your internet connection 2. Try downloading manually: curl -L -o ' D:\temp\2025_08_31_19_40_17_21872\Rtmpm0HH0m/test_cache_dir_12345/fake.gguf ' ' https://huggingface.co/fake/model/resolve/main/fake.gguf ' 3. Or use a different model from edge_list_models() Setting up TinyLlama-1.1B ... Created cache directory: C:\Users\CRAN\Documents/.cache/edgemodelr Downloading model... From: https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf To: C:\Users\CRAN\Documents/.cache/edgemodelr/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf trying URL 'https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf' Content type 'binary/octet-stream' length 668788096 bytes (637.8 MB) ================================================== downloaded 637.8 MB Download completed successfully! Model size: 637.8 MB llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 2048 llama_context: n_ctx_per_seq = 2048 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 2048 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 44.00 MiB llama_kv_cache: size = 44.00 MiB ( 2048 cells, 22 layers, 1/1 seqs), K (f16): 22.00 MiB, V (f16): 22.00 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 149.01 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 Setting up TinyLlama-OpenOrca ... Downloading model... From: https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_K_M.gguf To: C:\Users\CRAN\Documents/.cache/edgemodelr/tinyllama-1.1b-1t-openorca.Q4_K_M.gguf trying URL 'https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_K_M.gguf' Content type 'binary/octet-stream' length 667814368 bytes (636.9 MB) ================================================== downloaded 636.9 MB Download completed successfully! Model size: 636.9 MB llama_model_loader: loaded meta data with 19 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-1t-openorca.Q4_K_M.gguf (version GGUF V2) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = jeff31415_tinyllama-1.1b-1t-openorca llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: general.file_type u32 = 15 llama_model_loader: - kv 11: tokenizer.ggml.model str = llama llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 18: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V2 print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = jeff31415_tinyllama-1.1b-1t-openorca print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB ...................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 2048 llama_context: n_ctx_per_seq = 2048 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 2048 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 44.00 MiB llama_kv_cache: size = 44.00 MiB ( 2048 cells, 22 layers, 1/1 seqs), K (f16): 22.00 MiB, V (f16): 22.00 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 149.01 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 Setting up llama3.2-1b ... Downloading model... From: https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_K_M.gguf To: C:\Users\CRAN\Documents/.cache/edgemodelr/Llama-3.2-1B-Instruct-Q4_K_M.gguf trying URL 'https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_K_M.gguf' Content type 'text/plain; charset=utf-8' length 807694464 bytes (770.3 MB) ================================================== downloaded 770.3 MB Download completed successfully! Model size: 770.3 MB llama_model_loader: loaded meta data with 35 key-value pairs and 147 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\Llama-3.2-1B-Instruct-Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Llama 3.2 1B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Llama-3.2 llama_model_loader: - kv 5: general.size_label str = 1B llama_model_loader: - kv 6: general.license str = llama3.2 llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 9: llama.block_count u32 = 16 llama_model_loader: - kv 10: llama.context_length u32 = 131072 llama_model_loader: - kv 11: llama.embedding_length u32 = 2048 llama_model_loader: - kv 12: llama.feed_forward_length u32 = 8192 llama_model_loader: - kv 13: llama.attention.head_count u32 = 32 llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 17: llama.attention.key_length u32 = 64 llama_model_loader: - kv 18: llama.attention.value_length u32 = 64 llama_model_loader: - kv 19: general.file_type u32 = 15 llama_model_loader: - kv 20: llama.vocab_size u32 = 128256 llama_model_loader: - kv 21: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 22: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 23: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 24: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 26: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 29: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 30: general.quantization_version u32 = 2 llama_model_loader: - kv 31: quantize.imatrix.file str = /models_out/Llama-3.2-1B-Instruct-GGU... llama_model_loader: - kv 32: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 112 llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 125 llama_model_loader: - type f32: 34 tensors llama_model_loader: - type q4_K: 96 tensors llama_model_loader: - type q6_K: 17 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 762.81 MiB (5.18 BPW) init_tokenizer: initializing tokenizer for type 2 load: control token: 128254 '<|reserved_special_token_246|>' is not marked as EOG load: control token: 128249 '<|reserved_special_token_241|>' is not marked as EOG load: control token: 128246 '<|reserved_special_token_238|>' is not marked as EOG load: control token: 128243 '<|reserved_special_token_235|>' is not marked as EOG load: control token: 128242 '<|reserved_special_token_234|>' is not marked as EOG load: control token: 128241 '<|reserved_special_token_233|>' is not marked as EOG load: control token: 128240 '<|reserved_special_token_232|>' is not marked as EOG load: control token: 128235 '<|reserved_special_token_227|>' is not marked as EOG load: control token: 128231 '<|reserved_special_token_223|>' is not marked as EOG load: control token: 128230 '<|reserved_special_token_222|>' is not marked as EOG load: control token: 128228 '<|reserved_special_token_220|>' is not marked as EOG load: control token: 128225 '<|reserved_special_token_217|>' is not marked as EOG load: control token: 128218 '<|reserved_special_token_210|>' is not marked as EOG load: control token: 128214 '<|reserved_special_token_206|>' is not marked as EOG load: control token: 128213 '<|reserved_special_token_205|>' is not marked as EOG load: control token: 128207 '<|reserved_special_token_199|>' is not marked as EOG load: control token: 128206 '<|reserved_special_token_198|>' is not marked as EOG load: control token: 128204 '<|reserved_special_token_196|>' is not marked as EOG load: control token: 128200 '<|reserved_special_token_192|>' is not marked as EOG load: control token: 128199 '<|reserved_special_token_191|>' is not marked as EOG load: control token: 128198 '<|reserved_special_token_190|>' is not marked as EOG load: control token: 128196 '<|reserved_special_token_188|>' is not marked as EOG load: control token: 128194 '<|reserved_special_token_186|>' is not marked as EOG load: control token: 128193 '<|reserved_special_token_185|>' is not marked as EOG load: control token: 128188 '<|reserved_special_token_180|>' is not marked as EOG load: control token: 128187 '<|reserved_special_token_179|>' is not marked as EOG load: control token: 128185 '<|reserved_special_token_177|>' is not marked as EOG load: control token: 128184 '<|reserved_special_token_176|>' is not marked as EOG load: control token: 128180 '<|reserved_special_token_172|>' is not marked as EOG load: control token: 128179 '<|reserved_special_token_171|>' is not marked as EOG load: control token: 128178 '<|reserved_special_token_170|>' is not marked as EOG load: control token: 128177 '<|reserved_special_token_169|>' is not marked as EOG load: control token: 128176 '<|reserved_special_token_168|>' is not marked as EOG load: control token: 128175 '<|reserved_special_token_167|>' is not marked as EOG load: control token: 128171 '<|reserved_special_token_163|>' is not marked as EOG load: control token: 128170 '<|reserved_special_token_162|>' is not marked as EOG load: control token: 128169 '<|reserved_special_token_161|>' is not marked as EOG load: control token: 128168 '<|reserved_special_token_160|>' is not marked as EOG load: control token: 128165 '<|reserved_special_token_157|>' is not marked as EOG load: control token: 128162 '<|reserved_special_token_154|>' is not marked as EOG load: control token: 128158 '<|reserved_special_token_150|>' is not marked as EOG load: control token: 128156 '<|reserved_special_token_148|>' is not marked as EOG load: control token: 128155 '<|reserved_special_token_147|>' is not marked as EOG load: control token: 128154 '<|reserved_special_token_146|>' is not marked as EOG load: control token: 128151 '<|reserved_special_token_143|>' is not marked as EOG load: control token: 128149 '<|reserved_special_token_141|>' is not marked as EOG load: control token: 128147 '<|reserved_special_token_139|>' is not marked as EOG load: control token: 128146 '<|reserved_special_token_138|>' is not marked as EOG load: control token: 128144 '<|reserved_special_token_136|>' is not marked as EOG load: control token: 128142 '<|reserved_special_token_134|>' is not marked as EOG load: control token: 128141 '<|reserved_special_token_133|>' is not marked as EOG load: control token: 128138 '<|reserved_special_token_130|>' is not marked as EOG load: control token: 128136 '<|reserved_special_token_128|>' is not marked as EOG load: control token: 128135 '<|reserved_special_token_127|>' is not marked as EOG load: control token: 128134 '<|reserved_special_token_126|>' is not marked as EOG load: control token: 128133 '<|reserved_special_token_125|>' is not marked as EOG load: control token: 128131 '<|reserved_special_token_123|>' is not marked as EOG load: control token: 128128 '<|reserved_special_token_120|>' is not marked as EOG load: control token: 128124 '<|reserved_special_token_116|>' is not marked as EOG load: control token: 128123 '<|reserved_special_token_115|>' is not marked as EOG load: control token: 128122 '<|reserved_special_token_114|>' is not marked as EOG load: control token: 128119 '<|reserved_special_token_111|>' is not marked as EOG load: control token: 128115 '<|reserved_special_token_107|>' is not marked as EOG load: control token: 128112 '<|reserved_special_token_104|>' is not marked as EOG load: control token: 128110 '<|reserved_special_token_102|>' is not marked as EOG load: control token: 128109 '<|reserved_special_token_101|>' is not marked as EOG load: control token: 128108 '<|reserved_special_token_100|>' is not marked as EOG load: control token: 128106 '<|reserved_special_token_98|>' is not marked as EOG load: control token: 128103 '<|reserved_special_token_95|>' is not marked as EOG load: control token: 128102 '<|reserved_special_token_94|>' is not marked as EOG load: control token: 128101 '<|reserved_special_token_93|>' is not marked as EOG load: control token: 128097 '<|reserved_special_token_89|>' is not marked as EOG load: control token: 128091 '<|reserved_special_token_83|>' is not marked as EOG load: control token: 128090 '<|reserved_special_token_82|>' is not marked as EOG load: control token: 128089 '<|reserved_special_token_81|>' is not marked as EOG load: control token: 128087 '<|reserved_special_token_79|>' is not marked as EOG load: control token: 128085 '<|reserved_special_token_77|>' is not marked as EOG load: control token: 128081 '<|reserved_special_token_73|>' is not marked as EOG load: control token: 128078 '<|reserved_special_token_70|>' is not marked as EOG load: control token: 128076 '<|reserved_special_token_68|>' is not marked as EOG load: control token: 128075 '<|reserved_special_token_67|>' is not marked as EOG load: control token: 128073 '<|reserved_special_token_65|>' is not marked as EOG load: control token: 128068 '<|reserved_special_token_60|>' is not marked as EOG load: control token: 128067 '<|reserved_special_token_59|>' is not marked as EOG load: control token: 128065 '<|reserved_special_token_57|>' is not marked as EOG load: control token: 128063 '<|reserved_special_token_55|>' is not marked as EOG load: control token: 128062 '<|reserved_special_token_54|>' is not marked as EOG load: control token: 128060 '<|reserved_special_token_52|>' is not marked as EOG load: control token: 128059 '<|reserved_special_token_51|>' is not marked as EOG load: control token: 128057 '<|reserved_special_token_49|>' is not marked as EOG load: control token: 128054 '<|reserved_special_token_46|>' is not marked as EOG load: control token: 128046 '<|reserved_special_token_38|>' is not marked as EOG load: control token: 128045 '<|reserved_special_token_37|>' is not marked as EOG load: control token: 128044 '<|reserved_special_token_36|>' is not marked as EOG load: control token: 128043 '<|reserved_special_token_35|>' is not marked as EOG load: control token: 128038 '<|reserved_special_token_30|>' is not marked as EOG load: control token: 128036 '<|reserved_special_token_28|>' is not marked as EOG load: control token: 128035 '<|reserved_special_token_27|>' is not marked as EOG load: control token: 128032 '<|reserved_special_token_24|>' is not marked as EOG load: control token: 128028 '<|reserved_special_token_20|>' is not marked as EOG load: control token: 128027 '<|reserved_special_token_19|>' is not marked as EOG load: control token: 128024 '<|reserved_special_token_16|>' is not marked as EOG load: control token: 128023 '<|reserved_special_token_15|>' is not marked as EOG load: control token: 128022 '<|reserved_special_token_14|>' is not marked as EOG load: control token: 128021 '<|reserved_special_token_13|>' is not marked as EOG load: control token: 128018 '<|reserved_special_token_10|>' is not marked as EOG load: control token: 128016 '<|reserved_special_token_8|>' is not marked as EOG load: control token: 128015 '<|reserved_special_token_7|>' is not marked as EOG load: control token: 128013 '<|reserved_special_token_5|>' is not marked as EOG load: control token: 128011 '<|reserved_special_token_3|>' is not marked as EOG load: control token: 128005 '<|reserved_special_token_2|>' is not marked as EOG load: control token: 128004 '<|finetune_right_pad_id|>' is not marked as EOG load: control token: 128002 '<|reserved_special_token_0|>' is not marked as EOG load: control token: 128252 '<|reserved_special_token_244|>' is not marked as EOG load: control token: 128190 '<|reserved_special_token_182|>' is not marked as EOG load: control token: 128183 '<|reserved_special_token_175|>' is not marked as EOG load: control token: 128137 '<|reserved_special_token_129|>' is not marked as EOG load: control token: 128182 '<|reserved_special_token_174|>' is not marked as EOG load: control token: 128040 '<|reserved_special_token_32|>' is not marked as EOG load: control token: 128048 '<|reserved_special_token_40|>' is not marked as EOG load: control token: 128092 '<|reserved_special_token_84|>' is not marked as EOG load: control token: 128215 '<|reserved_special_token_207|>' is not marked as EOG load: control token: 128107 '<|reserved_special_token_99|>' is not marked as EOG load: control token: 128208 '<|reserved_special_token_200|>' is not marked as EOG load: control token: 128145 '<|reserved_special_token_137|>' is not marked as EOG load: control token: 128031 '<|reserved_special_token_23|>' is not marked as EOG load: control token: 128129 '<|reserved_special_token_121|>' is not marked as EOG load: control token: 128201 '<|reserved_special_token_193|>' is not marked as EOG load: control token: 128074 '<|reserved_special_token_66|>' is not marked as EOG load: control token: 128095 '<|reserved_special_token_87|>' is not marked as EOG load: control token: 128186 '<|reserved_special_token_178|>' is not marked as EOG load: control token: 128143 '<|reserved_special_token_135|>' is not marked as EOG load: control token: 128229 '<|reserved_special_token_221|>' is not marked as EOG load: control token: 128007 '<|end_header_id|>' is not marked as EOG load: control token: 128055 '<|reserved_special_token_47|>' is not marked as EOG load: control token: 128056 '<|reserved_special_token_48|>' is not marked as EOG load: control token: 128061 '<|reserved_special_token_53|>' is not marked as EOG load: control token: 128153 '<|reserved_special_token_145|>' is not marked as EOG load: control token: 128152 '<|reserved_special_token_144|>' is not marked as EOG load: control token: 128212 '<|reserved_special_token_204|>' is not marked as EOG load: control token: 128172 '<|reserved_special_token_164|>' is not marked as EOG load: control token: 128160 '<|reserved_special_token_152|>' is not marked as EOG load: control token: 128041 '<|reserved_special_token_33|>' is not marked as EOG load: control token: 128181 '<|reserved_special_token_173|>' is not marked as EOG load: control token: 128094 '<|reserved_special_token_86|>' is not marked as EOG load: control token: 128118 '<|reserved_special_token_110|>' is not marked as EOG load: control token: 128236 '<|reserved_special_token_228|>' is not marked as EOG load: control token: 128148 '<|reserved_special_token_140|>' is not marked as EOG load: control token: 128042 '<|reserved_special_token_34|>' is not marked as EOG load: control token: 128139 '<|reserved_special_token_131|>' is not marked as EOG load: control token: 128173 '<|reserved_special_token_165|>' is not marked as EOG load: control token: 128239 '<|reserved_special_token_231|>' is not marked as EOG load: control token: 128157 '<|reserved_special_token_149|>' is not marked as EOG load: control token: 128052 '<|reserved_special_token_44|>' is not marked as EOG load: control token: 128026 '<|reserved_special_token_18|>' is not marked as EOG load: control token: 128003 '<|reserved_special_token_1|>' is not marked as EOG load: control token: 128019 '<|reserved_special_token_11|>' is not marked as EOG load: control token: 128116 '<|reserved_special_token_108|>' is not marked as EOG load: control token: 128161 '<|reserved_special_token_153|>' is not marked as EOG load: control token: 128226 '<|reserved_special_token_218|>' is not marked as EOG load: control token: 128159 '<|reserved_special_token_151|>' is not marked as EOG load: control token: 128012 '<|reserved_special_token_4|>' is not marked as EOG load: control token: 128088 '<|reserved_special_token_80|>' is not marked as EOG load: control token: 128163 '<|reserved_special_token_155|>' is not marked as EOG load: control token: 128113 '<|reserved_special_token_105|>' is not marked as EOG load: control token: 128250 '<|reserved_special_token_242|>' is not marked as EOG load: control token: 128125 '<|reserved_special_token_117|>' is not marked as EOG load: control token: 128053 '<|reserved_special_token_45|>' is not marked as EOG load: control token: 128224 '<|reserved_special_token_216|>' is not marked as EOG load: control token: 128247 '<|reserved_special_token_239|>' is not marked as EOG load: control token: 128251 '<|reserved_special_token_243|>' is not marked as EOG load: control token: 128216 '<|reserved_special_token_208|>' is not marked as EOG load: control token: 128006 '<|start_header_id|>' is not marked as EOG load: control token: 128211 '<|reserved_special_token_203|>' is not marked as EOG load: control token: 128077 '<|reserved_special_token_69|>' is not marked as EOG load: control token: 128237 '<|reserved_special_token_229|>' is not marked as EOG load: control token: 128086 '<|reserved_special_token_78|>' is not marked as EOG load: control token: 128227 '<|reserved_special_token_219|>' is not marked as EOG load: control token: 128058 '<|reserved_special_token_50|>' is not marked as EOG load: control token: 128100 '<|reserved_special_token_92|>' is not marked as EOG load: control token: 128209 '<|reserved_special_token_201|>' is not marked as EOG load: control token: 128084 '<|reserved_special_token_76|>' is not marked as EOG load: control token: 128071 '<|reserved_special_token_63|>' is not marked as EOG load: control token: 128070 '<|reserved_special_token_62|>' is not marked as EOG load: control token: 128049 '<|reserved_special_token_41|>' is not marked as EOG load: control token: 128197 '<|reserved_special_token_189|>' is not marked as EOG load: control token: 128072 '<|reserved_special_token_64|>' is not marked as EOG load: control token: 128000 '<|begin_of_text|>' is not marked as EOG load: control token: 128223 '<|reserved_special_token_215|>' is not marked as EOG load: control token: 128217 '<|reserved_special_token_209|>' is not marked as EOG load: control token: 128111 '<|reserved_special_token_103|>' is not marked as EOG load: control token: 128203 '<|reserved_special_token_195|>' is not marked as EOG load: control token: 128051 '<|reserved_special_token_43|>' is not marked as EOG load: control token: 128030 '<|reserved_special_token_22|>' is not marked as EOG load: control token: 128117 '<|reserved_special_token_109|>' is not marked as EOG load: control token: 128010 '<|python_tag|>' is not marked as EOG load: control token: 128238 '<|reserved_special_token_230|>' is not marked as EOG load: control token: 128255 '<|reserved_special_token_247|>' is not marked as EOG load: control token: 128202 '<|reserved_special_token_194|>' is not marked as EOG load: control token: 128132 '<|reserved_special_token_124|>' is not marked as EOG load: control token: 128248 '<|reserved_special_token_240|>' is not marked as EOG load: control token: 128167 '<|reserved_special_token_159|>' is not marked as EOG load: control token: 128127 '<|reserved_special_token_119|>' is not marked as EOG load: control token: 128105 '<|reserved_special_token_97|>' is not marked as EOG load: control token: 128039 '<|reserved_special_token_31|>' is not marked as EOG load: control token: 128232 '<|reserved_special_token_224|>' is not marked as EOG load: control token: 128166 '<|reserved_special_token_158|>' is not marked as EOG load: control token: 128130 '<|reserved_special_token_122|>' is not marked as EOG load: control token: 128114 '<|reserved_special_token_106|>' is not marked as EOG load: control token: 128234 '<|reserved_special_token_226|>' is not marked as EOG load: control token: 128191 '<|reserved_special_token_183|>' is not marked as EOG load: control token: 128064 '<|reserved_special_token_56|>' is not marked as EOG load: control token: 128140 '<|reserved_special_token_132|>' is not marked as EOG load: control token: 128096 '<|reserved_special_token_88|>' is not marked as EOG load: control token: 128098 '<|reserved_special_token_90|>' is not marked as EOG load: control token: 128192 '<|reserved_special_token_184|>' is not marked as EOG load: control token: 128093 '<|reserved_special_token_85|>' is not marked as EOG load: control token: 128150 '<|reserved_special_token_142|>' is not marked as EOG load: control token: 128222 '<|reserved_special_token_214|>' is not marked as EOG load: control token: 128233 '<|reserved_special_token_225|>' is not marked as EOG load: control token: 128220 '<|reserved_special_token_212|>' is not marked as EOG load: control token: 128034 '<|reserved_special_token_26|>' is not marked as EOG load: control token: 128033 '<|reserved_special_token_25|>' is not marked as EOG load: control token: 128253 '<|reserved_special_token_245|>' is not marked as EOG load: control token: 128195 '<|reserved_special_token_187|>' is not marked as EOG load: control token: 128099 '<|reserved_special_token_91|>' is not marked as EOG load: control token: 128189 '<|reserved_special_token_181|>' is not marked as EOG load: control token: 128210 '<|reserved_special_token_202|>' is not marked as EOG load: control token: 128174 '<|reserved_special_token_166|>' is not marked as EOG load: control token: 128083 '<|reserved_special_token_75|>' is not marked as EOG load: control token: 128080 '<|reserved_special_token_72|>' is not marked as EOG load: control token: 128104 '<|reserved_special_token_96|>' is not marked as EOG load: control token: 128082 '<|reserved_special_token_74|>' is not marked as EOG load: control token: 128219 '<|reserved_special_token_211|>' is not marked as EOG load: control token: 128017 '<|reserved_special_token_9|>' is not marked as EOG load: control token: 128050 '<|reserved_special_token_42|>' is not marked as EOG load: control token: 128205 '<|reserved_special_token_197|>' is not marked as EOG load: control token: 128047 '<|reserved_special_token_39|>' is not marked as EOG load: control token: 128164 '<|reserved_special_token_156|>' is not marked as EOG load: control token: 128020 '<|reserved_special_token_12|>' is not marked as EOG load: control token: 128069 '<|reserved_special_token_61|>' is not marked as EOG load: control token: 128245 '<|reserved_special_token_237|>' is not marked as EOG load: control token: 128121 '<|reserved_special_token_113|>' is not marked as EOG load: control token: 128079 '<|reserved_special_token_71|>' is not marked as EOG load: control token: 128037 '<|reserved_special_token_29|>' is not marked as EOG load: control token: 128244 '<|reserved_special_token_236|>' is not marked as EOG load: control token: 128029 '<|reserved_special_token_21|>' is not marked as EOG load: control token: 128221 '<|reserved_special_token_213|>' is not marked as EOG load: control token: 128066 '<|reserved_special_token_58|>' is not marked as EOG load: control token: 128120 '<|reserved_special_token_112|>' is not marked as EOG load: control token: 128014 '<|reserved_special_token_6|>' is not marked as EOG load: control token: 128025 '<|reserved_special_token_17|>' is not marked as EOG load: control token: 128126 '<|reserved_special_token_118|>' is not marked as EOG load: printing all EOG tokens: load: - 128001 ('<|end_of_text|>') load: - 128008 ('<|eom_id|>') load: - 128009 ('<|eot_id|>') load: special tokens cache size = 256 load: token to piece cache size = 0.7999 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 131072 print_info: n_embd = 2048 print_info: n_layer = 16 print_info: n_head = 32 print_info: n_head_kv = 8 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 4 print_info: n_embd_k_gqa = 512 print_info: n_embd_v_gqa = 512 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 8192 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 500000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 131072 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.24 B print_info: general.name = Llama 3.2 1B Instruct print_info: vocab type = BPE print_info: n_vocab = 128256 print_info: n_merges = 280147 print_info: BOS token = 128000 '<|begin_of_text|>' print_info: EOS token = 128009 '<|eot_id|>' print_info: EOT token = 128009 '<|eot_id|>' print_info: EOM token = 128008 '<|eom_id|>' print_info: LF token = 198 'Ċ' print_info: EOG token = 128001 '<|end_of_text|>' print_info: EOG token = 128008 '<|eom_id|>' print_info: EOG token = 128009 '<|eot_id|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 762.81 MiB ............................................................. llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 2048 llama_context: n_ctx_per_seq = 2048 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 500000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (2048) < n_ctx_train (131072) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.49 MiB create_memory: n_ctx = 2048 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: CPU KV buffer size = 64.00 MiB llama_kv_cache: size = 64.00 MiB ( 2048 cells, 16 layers, 1/1 seqs), K (f16): 32.00 MiB, V (f16): 32.00 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1176 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 254.50 MiB llama_context: graph nodes = 566 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 128 llama_context: n_ctx_per_seq = 128 llama_context: n_batch = 128 llama_context: n_ubatch = 128 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (128) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 128 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 2.75 MiB llama_kv_cache: size = 2.75 MiB ( 128 cells, 22 layers, 1/1 seqs), K (f16): 1.38 MiB, V (f16): 1.38 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 128, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 llama_context: CPU compute buffer size = 16.63 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 128 llama_context: n_ctx_per_seq = 128 llama_context: n_batch = 128 llama_context: n_ubatch = 128 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (128) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 128 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 2.75 MiB llama_kv_cache: size = 2.75 MiB ( 128 cells, 22 layers, 1/1 seqs), K (f16): 1.38 MiB, V (f16): 1.38 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 128, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 llama_context: CPU compute buffer size = 16.63 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 128 llama_context: n_ctx_per_seq = 128 llama_context: n_batch = 128 llama_context: n_ubatch = 128 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (128) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 128 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 2.75 MiB llama_kv_cache: size = 2.75 MiB ( 128 cells, 22 layers, 1/1 seqs), K (f16): 1.38 MiB, V (f16): 1.38 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 128, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 128, n_seqs = 1, n_outputs = 128 llama_context: CPU compute buffer size = 16.63 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_batch is less than GGML_KQ_MASK_PAD - increasing to 64 llama_context: n_seq_max = 1 llama_context: n_ctx = 16 llama_context: n_ctx_per_seq = 16 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (16) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 32 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 0.69 MiB llama_kv_cache: size = 0.69 MiB ( 32 cells, 22 layers, 1/1 seqs), K (f16): 0.34 MiB, V (f16): 0.34 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 32, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 32, n_seqs = 1, n_outputs = 32 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 32, n_seqs = 1, n_outputs = 32 llama_context: CPU compute buffer size = 4.16 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 8192 llama_context: n_ctx_per_seq = 8192 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (8192) > n_ctx_train (2048) -- possible training context overflow set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 8192 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 176.00 MiB llama_kv_cache: size = 176.00 MiB ( 8192 cells, 22 layers, 1/1 seqs), K (f16): 88.00 MiB, V (f16): 88.00 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 545.01 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 64 llama_context: n_ctx_per_seq = 64 llama_context: n_batch = 64 llama_context: n_ubatch = 64 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (64) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 64 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 1.38 MiB llama_kv_cache: size = 1.38 MiB ( 64 cells, 22 layers, 1/1 seqs), K (f16): 0.69 MiB, V (f16): 0.69 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 64, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 64, n_seqs = 1, n_outputs = 64 llama_context: CPU compute buffer size = 8.31 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 Model file not found: C:\nonexistent\model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: \\server\share\model.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: ./nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() Model file not found: ../nonexistent.gguf Try these options: 1. Download a model: edge_download_model('TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF', 'tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf') 2. Quick setup: edge_quick_setup('TinyLlama-1.1B') 3. List models: edge_list_models() llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 256 llama_context: n_ctx_per_seq = 256 llama_context: n_batch = 256 llama_context: n_ubatch = 256 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (256) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 256 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 5.50 MiB llama_kv_cache: size = 5.50 MiB ( 256 cells, 22 layers, 1/1 seqs), K (f16): 2.75 MiB, V (f16): 2.75 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 256, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256 llama_context: CPU compute buffer size = 33.25 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 decode: failed to find a memory slot for batch of size 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 decode: failed to find a memory slot for batch of size 3 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 256 llama_context: n_ctx_per_seq = 256 llama_context: n_batch = 256 llama_context: n_ubatch = 256 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (256) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 256 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 5.50 MiB llama_kv_cache: size = 5.50 MiB ( 256 cells, 22 layers, 1/1 seqs), K (f16): 2.75 MiB, V (f16): 2.75 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 256, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 256, n_seqs = 1, n_outputs = 256 llama_context: CPU compute buffer size = 33.25 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 llama_model_loader: loaded meta data with 23 key-value pairs and 201 tensors from C:\Users\CRAN\Documents\.cache\edgemodelr\tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.name str = tinyllama_tinyllama-1.1b-chat-v1.0 llama_model_loader: - kv 2: llama.context_length u32 = 2048 llama_model_loader: - kv 3: llama.embedding_length u32 = 2048 llama_model_loader: - kv 4: llama.block_count u32 = 22 llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64 llama_model_loader: - kv 7: llama.attention.head_count u32 = 32 llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4 llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000 llama_model_loader: - kv 11: general.file_type u32 = 15 llama_model_loader: - kv 12: tokenizer.ggml.model str = llama llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,61249] = ["▁ t", "e r", "i n", "▁ a", "e n... llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 19: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}\n{% if m... llama_model_loader: - kv 22: general.quantization_version u32 = 2 llama_model_loader: - type f32: 45 tensors llama_model_loader: - type q4_K: 135 tensors llama_model_loader: - type q6_K: 21 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 636.18 MiB (4.85 BPW) init_tokenizer: initializing tokenizer for type 1 load: control token: 2 '' is not marked as EOG load: control token: 1 '' is not marked as EOG load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect load: printing all EOG tokens: load: - 2 ('') load: special tokens cache size = 3 load: token to piece cache size = 0.1684 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 2048 print_info: n_embd = 2048 print_info: n_layer = 22 print_info: n_head = 32 print_info: n_head_kv = 4 print_info: n_rot = 64 print_info: n_swa = 0 print_info: is_swa_any = 0 print_info: n_embd_head_k = 64 print_info: n_embd_head_v = 64 print_info: n_gqa = 8 print_info: n_embd_k_gqa = 256 print_info: n_embd_v_gqa = 256 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 5632 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 10000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 2048 print_info: rope_finetuned = unknown print_info: model type = 1B print_info: model params = 1.10 B print_info: general.name = tinyllama_tinyllama-1.1b-chat-v1.0 print_info: vocab type = SPM print_info: n_vocab = 32000 print_info: n_merges = 0 print_info: BOS token = 1 '' print_info: EOS token = 2 '' print_info: UNK token = 0 '' print_info: PAD token = 2 '' print_info: LF token = 13 '<0x0A>' print_info: EOG token = 2 '' print_info: max token length = 48 load_tensors: loading model tensors, this can take a while... (mmap = true) load_tensors: layer 0 assigned to device CPU, is_swa = 0 load_tensors: layer 1 assigned to device CPU, is_swa = 0 load_tensors: layer 2 assigned to device CPU, is_swa = 0 load_tensors: layer 3 assigned to device CPU, is_swa = 0 load_tensors: layer 4 assigned to device CPU, is_swa = 0 load_tensors: layer 5 assigned to device CPU, is_swa = 0 load_tensors: layer 6 assigned to device CPU, is_swa = 0 load_tensors: layer 7 assigned to device CPU, is_swa = 0 load_tensors: layer 8 assigned to device CPU, is_swa = 0 load_tensors: layer 9 assigned to device CPU, is_swa = 0 load_tensors: layer 10 assigned to device CPU, is_swa = 0 load_tensors: layer 11 assigned to device CPU, is_swa = 0 load_tensors: layer 12 assigned to device CPU, is_swa = 0 load_tensors: layer 13 assigned to device CPU, is_swa = 0 load_tensors: layer 14 assigned to device CPU, is_swa = 0 load_tensors: layer 15 assigned to device CPU, is_swa = 0 load_tensors: layer 16 assigned to device CPU, is_swa = 0 load_tensors: layer 17 assigned to device CPU, is_swa = 0 load_tensors: layer 18 assigned to device CPU, is_swa = 0 load_tensors: layer 19 assigned to device CPU, is_swa = 0 load_tensors: layer 20 assigned to device CPU, is_swa = 0 load_tensors: layer 21 assigned to device CPU, is_swa = 0 load_tensors: layer 22 assigned to device CPU, is_swa = 0 skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602 load_tensors: CPU_Mapped model buffer size = 636.18 MiB .................................................................................... llama_context: constructing llama_context llama_context: n_seq_max = 1 llama_context: n_ctx = 512 llama_context: n_ctx_per_seq = 512 llama_context: n_batch = 512 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: kv_unified = false llama_context: freq_base = 10000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (512) < n_ctx_train (2048) -- the full capacity of the model will not be utilized set_abort_callback: call llama_context: CPU output buffer size = 0.12 MiB create_memory: n_ctx = 512 (padded) llama_kv_cache: layer 0: dev = CPU llama_kv_cache: layer 1: dev = CPU llama_kv_cache: layer 2: dev = CPU llama_kv_cache: layer 3: dev = CPU llama_kv_cache: layer 4: dev = CPU llama_kv_cache: layer 5: dev = CPU llama_kv_cache: layer 6: dev = CPU llama_kv_cache: layer 7: dev = CPU llama_kv_cache: layer 8: dev = CPU llama_kv_cache: layer 9: dev = CPU llama_kv_cache: layer 10: dev = CPU llama_kv_cache: layer 11: dev = CPU llama_kv_cache: layer 12: dev = CPU llama_kv_cache: layer 13: dev = CPU llama_kv_cache: layer 14: dev = CPU llama_kv_cache: layer 15: dev = CPU llama_kv_cache: layer 16: dev = CPU llama_kv_cache: layer 17: dev = CPU llama_kv_cache: layer 18: dev = CPU llama_kv_cache: layer 19: dev = CPU llama_kv_cache: layer 20: dev = CPU llama_kv_cache: layer 21: dev = CPU llama_kv_cache: CPU KV buffer size = 11.00 MiB llama_kv_cache: size = 11.00 MiB ( 512 cells, 22 layers, 1/1 seqs), K (f16): 5.50 MiB, V (f16): 5.50 MiB llama_context: enumerating backends llama_context: backend_ptrs.size() = 1 llama_context: max_nodes = 1608 llama_context: worst-case: n_tokens = 512, n_seqs = 1, n_outputs = 0 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 graph_reserve: reserving a graph for ubatch with n_tokens = 1, n_seqs = 1, n_outputs = 1 graph_reserve: reserving a graph for ubatch with n_tokens = 512, n_seqs = 1, n_outputs = 512 llama_context: CPU compute buffer size = 66.50 MiB llama_context: graph nodes = 776 llama_context: graph splits = 1 [ FAIL 4 | WARN 8 | SKIP 20 | PASS 456 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • No test model available for concurrency tests (1): 'test-error-handling.R:230:7' • No test model available for concurrent operations tests (1): 'test-integration.R:381:7' • No test model available for edge case tests (1): 'test-error-handling.R:200:7' • No test model available for end-to-end scenario tests (1): 'test-integration.R:305:7' • No test model available for exception safety tests (1): 'test-error-handling.R:398:7' • No test model available for integration tests (1): 'test-integration.R:51:7' • No test model available for memory constraint tests (1): 'test-error-handling.R:130:7' • No test model available for memory management tests (1): 'test-model-management.R:127:7' • No test model available for performance tests (1): 'test-integration.R:209:7' • No test model available for real model loading tests (1): 'test-model-loading.R:224:5' • No test model available for streaming tests (1): 'test-streaming.R:321:5' • No test model available for stress tests (1): 'test-integration.R:160:7' • empty test (8): 'test-error-handling.R:1:1', 'test-integration.R:1:1', 'test-model-management.R:1:1', 'test-model-management.R:283:1', 'test-model-management.R:336:1', 'test-streaming.R:1:1', 'test-streaming.R:326:1', 'test-text-completion.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-text-completion.R:121:7'): edge_completion parameter validation ── `edge_completion(ctx, "Hello", n_predict = "invalid")` did not throw the expected error. ── Failure ('test-text-completion.R:129:7'): edge_completion parameter validation ── `edge_completion(ctx, "Hello", temperature = "invalid")` did not throw the expected error. ── Failure ('test-text-completion.R:141:7'): edge_completion parameter validation ── `edge_completion(ctx, "Hello", top_p = "invalid")` did not throw the expected error. ── Error ('test-text-completion.R:284:9'): edge_completion stress tests ──────── Error: Error during completion: Failed to process prompt Backtrace: ▆ 1. └─edgemodelr::edge_completion(ctx, "Quick test", n_predict = 3) at test-text-completion.R:284:9 [ FAIL 4 | WARN 8 | SKIP 20 | PASS 456 ] Error: Test failures Execution halted * checking PDF version of manual ... [20s] OK * checking HTML version of manual ... OK * DONE Status: 1 ERROR, 1 WARNING, 1 NOTE