library(dplyr) set.seed(2021) df <- data.frame( name = sample(LETTERS, 10), size = rnorm(10, 10, 2), symbol = sample(c("circle", "rect", "triangle"), 10, replace= TRUE) ) test_that("options preset", { options(echarty.theme='jazz') p <- ec.init() expect_equal(p$x$theme, 'jazz') expect_equal(p$dependencies[[1]]$name, 'jazz') p <- cars |> ec.init() |> ec.theme(name='mine', code='{ "backgroundColor": "pink" }') expect_equal(p$x$theme, 'mine') options(echarty.theme=NULL) p <- cars |> ec.init() expect_equal(p$x$theme, '') options(echarty.font='monospace') p <- cars |> ec.init() expect_equal(p$x$opts$textStyle$fontFamily, 'monospace') options(echarty.font=NULL) }) test_that("ec.init presets for non-grouped data.frame", { p <- df |> ec.init(xAxis= list(scale=TRUE)) expect_equal(p$x$opts$xAxis$type, 'category') #expect_true(is.null(p$x$opts$xAxis$type)) # assume default='category' = WRONG expect_true(!is.null(p$x$opts$yAxis)) expect_equal(length(p$x$opts$dataset[[1]]$source), 11) expect_equal(p$x$opts$series[[1]]$type, 'scatter') }) test_that("ec.init presets for grouped data.frame", { p <- df |> dplyr::group_by(symbol) |> ec.init(yAxis= list(scale=TRUE, name='yaxe')) po <- p$x$opts expect_equal(po$xAxis$type, 'category') expect_equal(po$yAxis$name, 'yaxe') expect_equal(length(po$dataset[[1]]$source), 11) expect_equal(length(po$legend$data), 3) expect_equal(po$series[[1]]$type, 'scatter') expect_equal(po$series[[1]]$name, 'circle') expect_equal(po$series[[2]]$datasetIndex, 2) }) test_that("ec.init presets for timeline", { # TODO 'timeline= list(data=,axisType=)'... dftl <- data.frame( value = runif(16), quarter = as.factor(rep(1:4, 4)), year = unlist(lapply(2018:2021, function(x) {rep(x, 4)})) ) barTL <- function(data, timeline_var) { #}, x_var, bar_var) { bt <- data |> dplyr::group_by(!!dplyr::sym(timeline_var)) |> ec.init(series.param = list(type='bar'), #,encode=list(x=x_var, y=bar_var)), xAxis= list(name='xval'), timeline= list(s=T) # data= c(1,2,3,4), axisType='value') #ok ) bt } p <- barTL(dftl, timeline_var= "year") #, x_var= "value", bar_var= "quarter") o <- p$x$opts expect_equal(length(o$dataset[[1]]$source), 17) expect_equal(length(o$dataset), 5) expect_equal(length(o$options), 4) expect_equal(o$timeline$axisType, 'category') expect_equal(o$yAxis$name, 'quarter') expect_equal(o$xAxis$name, 'xval') expect_equal(o$options[[1]]$series[[1]]$encode, list(x=0, y=1, z=2)) }) test_that("ec.init presets for timeline groupBy", { set.seed(2022) dat <- data.frame( x1 = rep(2020:2023, each = 4), x2 = rep(c("A", "A", "B", "B"), 4), x = runif(16), x4 = runif(16), y = abs(runif(16)), z= runif(16) ) p <- dat |> group_by(x1) |> ec.init( legend= list(show=TRUE), tl.series= list(encode= list(x= 'x', y= 'y'), symbolSize= ec.clmn('x4', scale=30), groupBy= 'x2') ) expect_equal(p$x$opts$options[[4]]$series[[1]]$type, 'scatter') expect_equal(p$x$opts$options[[4]]$series[[1]]$encode$y, 'y') expect_equal(p$x$opts$yAxis$name, 'y') p <- dat |> group_by(x1) |> ec.init(#load='3D', xAxis3D=list(s=T),yAxis3D=list(s=T),zAxis3D=list(s=T),grid3D=list(s=T), timeline=list(s=T), legend= list(show=TRUE), series.param= list(type='scatter3D', groupBy= 'x2', encode= list(x='x', y='y', z='z'), symbolSize= ec.clmn('x4', scale=30) ) ) expect_equal(p$x$opts$options[[1]]$series[[1]]$coordinateSystem, 'cartesian3D') expect_equal(length(p$x$opts$options[[1]]$series), 2) expect_equal(p$x$opts$options[[4]]$series[[2]]$datasetIndex, 8) expect_equal(p$x$opts$options[[4]]$series[[2]]$name, 'B') cns <- data.frame( val = c(22, 99, 33), dim = c(11, 88, 44), nam = c('Brazil','China','India') ) p <- cns |> group_by(nam) |> ec.init(load= 'world', tooltip= list(show=T), tl.series= list(type='map', encode= list(name='nam', value='val')), visualMap= list(calculable=TRUE, dimension=2) ) # name & value are required column names for tl.series expect_equal(p$x$opts$options[[3]]$series[[1]]$geoIndex,0) # decremented #expect_equal(p$x$opts$options[[1]]$series[[1]]$data[[1]]$name, 'Brazil') expect_equal(p$x$opts$options[[1]]$series[[1]]$datasetIndex, 1) expect_equal(p$x$opts$geo$map, 'world') expect_equal(p$x$opts$visualMap$max, 88) p <- cns |> relocate(dim, .after = last_col()) |> ec.init(load= 'world', series.param= list(type='map'), visualMap= list(s=T)) # defaults: # 1. map series will pick up the first num column for values, first char col for name # 2. visualMap will pick up the last column for max/min expect_equal(p$x$opts$dataset[[1]]$source[[1]], c("val","nam","dim")) expect_equal(p$x$opts$series[[1]]$geoIndex, 0) expect_equal(p$x$opts$visualMap$max, 88) }) test_that("presets for parallel chart", { p <- mtcars |> relocate(cyl, .after=last_col()) |> group_by(cyl) |> ec.init(ctype='parallel') expect_equal(length(p$x$opts$dataset), 4) expect_equal(p$x$opts$series[[3]]$datasetIndex, 3) expect_equal(p$x$opts$parallelAxis[[2]]$name, 'disp') }) test_that("presets for parallelAxis", { df <- as.data.frame(state.x77) |> head(10) p <- df |> ec.init(ctype= 'parallel', parallelAxis= ec.paxis(df, cols= c('Illiteracy','Population','Income'), inverse=T), series.param= list(lineStyle= list(width=3)) ) expect_equal(length(p$x$opts$dataset[[1]]$source[[1]]), 8) expect_equal(p$x$opts$parallelAxis[[3]]$name, 'Income') expect_true(p$x$opts$parallelAxis[[3]]$inverse) p <- df |> ec.init(ctype= 'parallel') |> # chained ec.paxis ec.paxis(cols= c('Illiteracy','Population','Income')) expect_equal(p$x$opts$parallelAxis[[1]]$dim, 2) }) test_that("presets for crosstalk", { library(crosstalk) df <- cars df <- SharedData$new(df) p <- df |> ec.init() expect_equal(p$x$opts$dataset[[2]]$id, 'Xtalk') expect_equal(p$x$opts$series[[1]]$datasetId, 'Xtalk') expect_equal(p$x$opts$dataset[[1]]$source[[1]][3], 'XkeyX') tmp <- SharedData$new(longley, key=~Year) # without XkeyX p <- tmp |> ec.init( xtKey='Year', parallelAxis= ec.paxis(longley, cols=c('Year','GNP')), series= list(list(type='parallel')) ) expect_equal(p$x$opts$dataset[[2]]$transform$config$dimension, 'Year') }) test_that("presets for leaflet/world", { tmp <- ' lng,lat,name,date,place -118.808101,32.843715,"Seabed","2021-02-02","location A" -117.332678,34.845565,"Lancaster","2021-04-02","location A" -116.127504,32.846118,"fwy #8","2021-04-02","place B" -117.316886,30.961700,"Baja","2021-07-02","place B" ' df <- read.csv(text=tmp, header=TRUE) p <- df |> ec.init( load='leaflet', tooltip= list(ey=''), series= list(list( encode= list(tooltip=c(3,4,5)) )) ) expect_equal(p$x$opts$series[[1]]$coordinateSystem, 'leaflet') expect_equal(p$x$opts$series[[1]]$encode$tooltip, c(2,3,4)) p <- ec.init(quakes |> head(11), load='world', ctype= 'scatter', series.param= list( encode= list(lng=2, lat=1, value=3), #encode= list(lng='long', lat='lat', value='mag'), itemStyle= list(color='brown')) ) expect_equal(p$x$opts$series[[1]]$coordinateSystem, 'geo') expect_equal(p$x$opts$geo$map, 'world') }) test_that("presets with series.param", { p <- df |> ec.init(ctype='line', series.param= list(symbol='pin', encode=list(x='size',y='name'))) expect_equal(p$x$opts$series[[1]]$symbol, 'pin') expect_equal(p$x$opts$yAxis$type, 'category') p <- ec.init(ctype='line', series.param= list(areaStyle= list(show= T), stack= 'stk', data= list(c(0,0), c(2,2))) ) expect_equal(p$x$opts$series[[1]]$data[[2]], c(2,2)) p <- df |> relocate(symbol) |> group_by(symbol) |> ec.init(series.param= list(encode= list(x=3, y=2))) expect_equal(p$x$opts$yAxis$name, 'name') }) test_that("presets for visualMap", { p <- df |> ec.init(visualMap= list(dimension= 2, inRange= list(color= c("blue", "red"))) ) expect_equal(p$x$opts$visualMap$dimension, 1) expect_equal(round(p$x$opts$visualMap$min,2), 8.66) }) test_that('axis names from preset encode', { tmp <- cars |> mutate(group = sample( c(1,2), 50, replace = TRUE)) |> relocate(group) |> group_by(group) # group is 1st col p <- tmp |> ec.init() expect_equal(p$x$opts$xAxis$name, 'speed') expect_equal(p$x$opts$yAxis$name, 'dist') p <- tmp |> ec.init(series.param= list(encode= list(x='dist', y='speed'))) expect_equal(p$x$opts$yAxis$name, 'speed') p <- tmp |> ec.init(series.param= list(encode= list(x=3, y=2))) expect_equal(p$x$opts$xAxis$name, 'dist') }) test_that('polar, pie, radar, themeRiver, parallel, etc.', { p <- cars |> ec.init(ctype='pie') expect_equal(p$x$opts$dataset[[1]]$source[[1]][1], 'speed') p <- cars |> ec.init(polar= list(radius= 222), series.param= list(type='line', smooth=T)) expect_equal(p$x$opts$series[[1]]$coordinateSystem, 'polar') dd <- data.frame( c1 = rep(1:3, each= 2), c2 = c(0,1,2,3,2,1), c3 = rep(c('d1', 'd2'), 3) ) p <- ec.init(series.param= list( type='themeRiver', data= ec.data(dd), label= list(s=T) ) ) expect_equal(p$x$opts$singleAxis, list(min='dataMin', max='dataMax')) p <- ec.init( radar= list(indicator= lapply(LETTERS[1:5], \(x){list(name= x)}) ), series.param= list(type='radar', data= list(list(name='r1', value= runif(5, 1, 5))) ) ) expect_equal(p$x$opts$series[[1]]$type, 'radar') # group column to be last p <- mtcars |> relocate(cyl, .after= last_col()) |> group_by(cyl) |> ec.init(ctype='parallel') expect_equal(length(p$x$opts$series), 3) expect_equal(length(p$x$opts$parallelAxis), 10) expect_equal(p$x$opts$parallelAxis[[1]]$name, 'mpg') p <- ec.init(series.param= list( type='gauge', data= list(list(name='score',value=44)))) expect_equal(names(p$x$opts), 'series') }) test_that('polar presets', { df <- data.frame(x = 1:10, y = seq(1, 20, by = 2)) p <- df |> ec.init(ctype='line', polar= list(dummy= T), series.param= list(smooth= T) ) expect_equal(p$x$opts$polar$radius, 111) expect_equal(p$x$opts$radiusAxis$type, 'category') expect_equal(p$x$opts$series[[1]]$coordinateSystem, 'polar') })