context("NPMLE") n <- 100 set.seed(1) s <- rnorm(n, 1, 0.1) x <- runif(n, -10, 10) + rnorm(n, sd = s) cdf_grid <- seq(-10, 10, 0.1) true_g <- ashr::unimix(1, -10, 10) true_cdf <- ashr::comp_cdf(true_g, cdf_grid) test_that("Basic functionality works", { npmle.res <- ebnm(x, s, prior_family = "npmle") npmle.res2 <- ebnm_npmle(x, s) npmle.res$call <- npmle.res2$call <- NULL expect_identical(npmle.res, npmle.res2) est_cdf <- drop(npmle.res$fitted_g$pi %*% ashr::comp_cdf(npmle.res$fitted_g, cdf_grid)) expect_equal(true_cdf, est_cdf, tolerance = 0.2) }) test_that("Fixing the scale works", { npmle.res <- ebnm_npmle(x, s, scale = 1) g_scale <- npmle.res$fitted_g$mean[2] - npmle.res$fitted_g$mean[1] expect_equal(1, g_scale, tolerance = 0.1) }) test_that("Fixing g works", { g_init = normalmix(rep(0.2, 5), seq(-10, 10, by = 5), 0) npmle.res <- ebnm_npmle(x, s, g_init = g_init, fix_g = TRUE) expect_identical(npmle.res[[g_ret_str()]], g_init) }) test_that("Gaussian grid is selected when the range of x is large", { x <- 100 * rcauchy(n) npmle.res <- ebnm_npmle(x, s) expect_true(npmle.res$fitted_g$sd[1] > 0) })