context("deconvolveR") n <- 1000 set.seed(1) x <- runif(n, -10, 10) + rnorm(n) s <- 1 cdf_grid <- seq(-10, 10, 0.1) true_g <- ashr::unimix(1, -10, 10) true_cdf <- ashr::comp_cdf(true_g, cdf_grid) test_that("Basic functionality works", { deconv.res <- ebnm(x, s, prior_family = "deconvolver") deconv.res2 <- ebnm_deconvolver(x, s) deconv.res$call <- deconv.res2$call <- NULL expect_identical(deconv.res, deconv.res2) est_cdf <- drop(deconv.res$fitted_g$pi %*% ashr::comp_cdf(deconv.res$fitted_g, cdf_grid)) expect_equal(true_cdf, est_cdf, tolerance = 0.1) }) test_that("Fixing the scale works", { deconv.res <- ebnm_deconvolver(x, s, scale = 1) g_scale <- deconv.res$fitted_g$mean[2] - deconv.res$fitted_g$mean[1] expect_equal(1, g_scale, tolerance = 0.1) }) test_that("Fixing g works", { g_init = normalmix(rep(0.2, 5), seq(-10, 10, by = 5), 0) deconv.res <- ebnm_deconvolver(x, s, g_init = g_init, fix_g = TRUE) expect_identical(deconv.res[[g_ret_str()]], g_init) }) test_that("deconv and nlm parameters get passed in", { deconv.res <- ebnm_deconvolver(x, s) deconv.res2 <- ebnm_deconvolver(x, s, c0 = 2, pDegree = 4, control = list(steptol = 1e-4)) expect_false(identical(deconv.res$fitted_g$pi, deconv.res2$fitted_g$pi)) }) # test_that("predict method works as expected", { # deconv.res <- ebnm_deconvolver(x, s) # deconv.res2 <- predict(deconv.res, list(x = 1:10, s = 1)) # expect_equal(deconv.res$fitted_g, deconv.res2$fitted_g) # })