source("helper-common.R") test_that("eaf", { test.eaf.dataset <- function(name, percentiles = NULL) { dataset <- get(name) x <- eaf:::compute.eaf(dataset, percentiles) # FIXME: work-around for change in the computation x[,3] <- floor(x[,3]) #saveRDS(x, paste0(name, "-eaf.rds")) return(x) } test.eaf.file <- function(file, percentiles = NULL) { dataset <- read_datasets(file) x <- eaf:::compute.eaf(dataset, percentiles) #saveRDS(x, paste0(basename(file), "-eaf.rds")) return(x) } expect_equal(test.eaf.file(extdata.path("ALG_1_dat.xz")), readRDS("ALG_1_dat-eaf.rds")) expect_equal(test.eaf.dataset("SPEA2relativeRichmond"), readRDS("SPEA2relativeRichmond-eaf.rds")) for (i in seq_len(399)) expect_equal(anyDuplicated(eafs(cbind(0:i, 0:i), 0:i)[,1]), 0L) }) test_that("eafs_sets_numeric", { expect_error(eafs(matrix(1:10, ncol=2), sets=letters[1:5]), "sets") }) test_that("eaf3d", { lin <- read_datasets("lin.S.txt") sph <- read_datasets("sph.S.txt") nobjs <- ncol(lin) - 1 nruns.left <- max(lin[, nobjs + 1]) data.combined <- sph data.combined[, nobjs + 1] <- data.combined[, nobjs + 1] + nruns.left data.combined <- rbind(lin, data.combined) # This may stop working once we filter uninteresting values in the C code directly. DIFF <- eaf:::compute.eafdiff.helper(data.combined, intervals = nruns.left) x <- as.matrix(read.table("lin.S-sph.S-diff.txt.xz", header = FALSE)) dimnames(x) <- NULL x[, nobjs + 1] <- x[, nobjs + 1] - x[, nobjs + 2] expect_equal(DIFF[, 1 : (nobjs + 1)], x[, 1 : (nobjs + 1)]) })