test_that("detectionPlot input checks work", { testthat::skip_on_cran() #' @srrstats {G5.2,G5.2b} Tests the assure function input checks are behaving #' as expected. # run joint model to do tests with model1 <- suppressWarnings({jointModel(data = gobyData, cov = c('Filter_time','Salinity'), n.chain = 1,n.iter.burn = 25, n.iter.sample = 75, multicore = FALSE)}) model2 <- suppressWarnings({jointModel(data = greencrabData, family = 'negbin', n.chain = 1,n.iter.burn = 25, n.iter.sample = 75,multicore = FALSE)}) #1. make sure model fit is of class stanfit expect_error(detectionPlot(as.matrix(model1$model), mu.min = 0.1, mu.max = 1, cov.val = c(0,0)), "modelfit must be of class 'stanfit'.") #2. make sure mu.min is a numeric value expect_error(detectionPlot(model1$model, mu.min = '0.1', mu.max = 1, cov.val = c(0,0)), "mu.min must be a numeric value greater than 0") #3. make sure mu.min is a numeric value expect_error(detectionPlot(model1$model, mu.min = 0, mu.max = 1, cov.val = c(0,0)), "mu.min must be a numeric value greater than 0") #4. make sure mu.max is a numeric value expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = '1', cov.val = c(0,0)), "mu.max must be a numeric value greater than mu.min") #5. make sure mu.max is a numeric value expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 0.1, cov.val = c(0,0)), "mu.max must be a numeric value greater than mu.min") #6. make sure mu.max is a numeric value expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, cov.val = c(0,0), probability = 1.1), "probability must be a numeric value between 0 and 1") #7. cov.val is numeric, if provided expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, cov.val = c(0,'0')), "cov.val must be a numeric vector") #8. Only include input cov.val if covariates are included in model expect_error(detectionPlot(model2$model, mu.min = 0.1, mu.max = 1, cov.val = c(0,0)), paste0("cov.val must be NULL if the model does not contain ", "site-level covariates.")) #9. Input cov.val is the same length as the number of estimated covariates. expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, cov.val = c(0,0,0)), paste0("cov.val must be of the same length as the number of ", "non-intercept site-level coefficients in the model.")) #10. If covariates are in model, cov.val must be provided expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1), paste0("cov.val must be provided if the model contains ", "site-level covariates.")) #11. qPCR.N must be an integer expect_error(detectionPlot(model1$model, mu.min = 0.1, mu.max = 1, cov.val = c(0,0), qPCR.N = 6.8), "qPCR.N should be an integer.") })