test_that("muCritical input checks work", { #' @srrstats {G5.2,G5.2b} Tests the assure function input checks are #' behaving as expected. # run joint model to do tests with model1 <- suppressWarnings({jointModel(data = gobyData, cov = c('Filter_time','Salinity'), multicore = FALSE, n.chain = 1, n.iter.burn = 25, n.iter.sample = 75)}) model2 <- suppressWarnings({traditionalModel(data = gobyData, multicore = FALSE, n.chain = 1, n.iter.burn = 25, n.iter.sample = 75)}) model3 <- suppressWarnings({jointModel(data = greencrabData, family = 'negbin', multicore = FALSE, n.chain = 1, n.iter.burn = 25, n.iter.sample = 75)}) #1. make sure model fit is of class stanfit expect_error(muCritical(as.matrix(model1$model), cov.val = c(0,0)), "modelfit must be of class 'stanfit'.") #2. make sure ci is valid expect_error(muCritical(model1$model, ci = 1, cov.val = c(0,0)), "ci must be a numeric value >0 and <1.") #3. make sure model fit contains p10 parameter expect_error(muCritical(model2$model), "modelfit must contain 'p10' parameter.") #4. if modelfit contains alpha, cov.val must be provided expect_error(muCritical(model1$model), paste0("If modelfit contains site-level covariates, values ", "must be provided for cov.val")) #5. cov.val is numeric, if provided expect_error(muCritical(model1$model, cov.val = c(TRUE,TRUE)), "cov.val must be a numeric vector") #6. Only include input cov.val if covariates are included in model expect_error(muCritical(model3$model, cov.val = c(0,0)), paste0("cov.val must be NULL if the model does not ", "contain site-level covariates.")) #7. Only include input cov.val if covariates are included in model expect_error(muCritical(model1$model, cov.val = c(0,0,0)), paste0("cov.val must be of the same length as the number of ", "non-intercept site-level coefficients in the model.")) }) test_that("muCritical output check", { # fit two models fit.cov <- suppressWarnings({jointModel(data = gobyData, cov = c('Filter_time','Salinity'), family = "poisson", p10priors = c(1,20), q = FALSE, multicore = FALSE, n.chain = 1, n.iter.burn = 25, n.iter.sample = 75)}) fit.q <- suppressWarnings({jointModel(data = greencrabData, cov = NULL, family = "negbin",p10priors = c(1,20), q = TRUE, multicore = FALSE, n.chain = 1, n.iter.burn = 25, n.iter.sample = 75)}) # check lengths of muCritical output expect_equal(length(muCritical(fit.cov$model, cov.val = c(0,0), ci = 0.9)), 3) expect_equal(dim(muCritical(fit.q$model, ci = 0.9)), c(3,2)) # check names of muCritical output expect_equal(names(muCritical(fit.cov$model, cov.val = c(0,0), ci = 0.9)), c('median','lower_ci','upper_ci')) expect_equal(rownames(muCritical(fit.q$model, ci = 0.9)), c('median','lower_ci','upper_ci')) expect_equal(names(muCritical(fit.q$model, ci = 0.9)), c('gear_1','gear_2')) # check values of muCritical output expect_equal(is.numeric(muCritical(fit.cov$model, cov.val = c(0,0), ci = 0.9)$median), TRUE) expect_equal(is.numeric(muCritical(fit.cov$model, cov.val = c(0,0), ci = 0.9)$lower_ci$CI_low), TRUE) expect_equal(is.numeric(muCritical(fit.cov$model, cov.val = c(0,0), ci = 0.9)$upper_ci$CI_high), TRUE) expect_equal(is.numeric(muCritical(fit.q$model, ci = 0.9)$gear_1), TRUE) expect_equal(is.numeric(muCritical(fit.q$model, ci = 0.9)$gear_2), TRUE) })