library(testthat) library(e2tree) library(randomForest) test_that("eComparison works correctly with valid inputs (classification case)", { set.seed(42) # Prepare data data(iris) train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris)) training <- iris[train_idx, ] # Train Random Forest ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE) # Create dissimilarity matrix D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1)) # Define settings setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5) # Generate e2tree model fit <- e2tree(Species ~ ., training, D, ensemble, setting) # Run eComparison comparison <- eComparison(training, fit, D, graph=FALSE) # Tests expect_type(comparison, "list") # Should return a list expect_true("mantel_test" %in% names(comparison)) }) test_that("eComparison handles incorrect input types (classification case)", { set.seed(42) data(iris) train_idx <- sample(seq_len(nrow(iris)), size = 0.75 * nrow(iris)) training <- iris[train_idx, ] ensemble <- randomForest(Species ~ ., data = training, importance = TRUE, proximity = TRUE) D <- createDisMatrix(ensemble, data = training, label = "Species", parallel = list(active=FALSE, no_cores = 1)) setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5) fit <- e2tree(Species ~ ., training, D, ensemble, setting) # Test incorrect inputs expect_error(eComparison(NULL, fit, D, graph=FALSE), "Error: 'data' must be a non-empty data frame.") expect_error(eComparison(training, NULL, D, graph=FALSE), "Error: 'fit' must be an 'e2tree' object.") expect_error(eComparison(training, fit, NULL, graph=FALSE), "Error: 'D' must be a square dissimilarity matrix.") expect_error(eComparison(training, fit, matrix(1, 5, 5), graph=FALSE), "Error: The number of rows in 'data' must match the dimensions of 'D'.") }) test_that("eComparison works correctly with valid inputs (regression case)", { set.seed(42) # Prepare data data(mtcars) train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars)) training <- mtcars[train_idx, ] # Train Random Forest ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE) # Create dissimilarity matrix D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1)) # Define settings setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5) # Generate e2tree model fit <- e2tree(mpg ~ ., training, D, ensemble, setting) # Run eComparison comparison <- eComparison(training, fit, D, graph=FALSE) # Tests expect_type(comparison, "list") # Should return a list expect_true("mantel_test" %in% names(comparison)) }) test_that("eComparison handles incorrect input types (regression case)", { set.seed(42) data(mtcars) train_idx <- sample(seq_len(nrow(mtcars)), size = 0.75 * nrow(mtcars)) training <- mtcars[train_idx, ] ensemble <- randomForest(mpg ~ ., data = training, importance = TRUE, proximity = TRUE) D <- createDisMatrix(ensemble, data = training, label = "mpg", parallel = list(active=FALSE, no_cores = 1)) setting <- list(impTotal = 0.1, maxDec = 0.01, n = 2, level = 5) fit <- e2tree(mpg ~ ., training, D, ensemble, setting) # Test incorrect inputs expect_error(eComparison(NULL, fit, D, graph=FALSE), "Error: 'data' must be a non-empty data frame.") expect_error(eComparison(training, NULL, D, graph=FALSE), "Error: 'fit' must be an 'e2tree' object.") expect_error(eComparison(training, fit, NULL, graph=FALSE), "Error: 'D' must be a square dissimilarity matrix.") expect_error(eComparison(training, fit, matrix(1, 5, 5), graph=FALSE), "Error: The number of rows in 'data' must match the dimensions of 'D'.") })