#' @srrstats {G5.0, G5.4, G5.4a, G5.4b, G5.4c} The parameter estimates of #' model fitted to a classic Grunfeld data match with brms and plm. run_extended_tests <- identical(Sys.getenv("DYNAMITE_EXTENDED_TESTS"), "true") data.table::setDTthreads(1) # For CRAN test_that("parameters of the Grunfield model are recovered", { skip_if_not(run_extended_tests) # data from plm package Grunfeld <- readRDS("grunfeld.rds") set.seed(1) # dynamite defines prior for the intercept based on the mean at the first time # point, which differs from the brms, so use dummy intercept instead in both Grunfeld$intercept <- 1 f <- obs(inv ~ -1 + intercept + value + capital + random(~-1 + intercept), family = "gaussian") + random_spec(noncentered = FALSE) p <- get_priors(f, Grunfeld, time = "year", group = "firm") # set very vague priors p$prior[] <- rep("normal(0, 1000)", nrow(p)) fit <- dynamite( dformula = f, data = Grunfeld, time = "year", group = "firm", priors = p, refresh = 0, seed = 1, chains = 2, cores = 2, iter = 20000, warmup = 1000 ) # Not run, values are stored # fit_plm <- plm(inv ~ value + capital, # data = Grunfeld, # index = c("firm", "year"), effect = "individual", model = "within" # ) #plm_est <- dput(coef(fit_plm)) plm_est <- c(value = 0.110123804120719, capital = 0.310065341300139) expect_equal( plm_est, coef(fit)$mean[2:3], tolerance = 0.01, ignore_attr = TRUE ) # Not run, values are stored # library(brms) # fit_brm <- brm(inv ~ 0 + Intercept + value + capital + (1 | firm), # Grunfeld, # prior = prior(normal(0, 1000), class = "b") + # prior(normal(0, 1000), class = "sd") + # prior(normal(0, 1000), class = "sigma"), # refresh = 0, seed = 1, # chains = 2, cores = 2, iter = 150000, warmup = 5000, # control = list(adapt_delta = 0.9)) # brms_est <- round(unname(posterior_summary(fit_brm)[, "Estimate"]), 6)[1:15] brms_est <- c( -57.917705, 0.109846, 0.308349, 100.941716, 53.086506, -9.896139, 158.194407, -173.491487, 29.99692, -54.875308, 34.459838, -7.931004, 0.646235, -28.227079, 50.50187 ) # reorder parameters to match dynamite brms_est <- brms_est[c(3, 1, 2, 6:15, 5, 4)] sumr <- as_draws(fit) |> posterior::summarise_draws( posterior::default_mcse_measures(), posterior::default_summary_measures() ) for (i in 1:15) { expect_equal( sumr$mean[i], brms_est[i], tolerance = 100 * sumr$mcse_mean[i], label = sumr$variable[i], ignore_attr = TRUE ) } })