data.table::setDTthreads(1) # For CRAN # Data warnings ----------------------------------------------------------- test_that("factor time conversion warns", { test_data <- data.frame( y = c(1, 2, 3), x = c(1, 1, 2), z = factor(c(1, 2, 3)) ) expect_warning( dynamite( dformula = obs(y ~ x, family = "negbin"), data = test_data, group = "x", time = "z", debug = list(no_compile = TRUE) ), paste0( "Time index variable `z` is a :\n", "i Converting the variable to based on its levels\\." ) ) }) test_that("perfect collinearity warns", { f1 <- obs(y ~ -1 + x + z, family = "gaussian") f2 <- obs(y ~ z, family = "gaussian") test_data1 <- data.frame(y = rnorm(10), x = rep(1, 10), z = rep(2, 10)) test_data2 <- data.frame(y = rep(1, 10), x = rep(1, 10), z = rnorm(10)) expect_warning( full_model.matrix(f1, test_data1, TRUE), "Perfect collinearity found between predictor variables of channel `y`\\." ) expect_warning( full_model.matrix(f2, test_data2, TRUE), paste0( "Perfect collinearity found between response and predictor variable:\n", "i Response variable `y` is perfectly collinear ", "with predictor variable `\\(Intercept\\)`\\." ) ) expect_warning( full_model.matrix(f1, test_data2, TRUE), paste0( "Perfect collinearity found between response and predictor variable:\n", "i Response variable `y` is perfectly collinear ", "with predictor variable `x`\\." ) ) }) test_that("too few observations warns", { f <- obs(y ~ x + z + w, family = "gaussian") test_data <- data.frame( y = rnorm(3), x = rnorm(3), z = rnorm(3), w = rnorm(3) ) expect_warning( full_model.matrix(f, test_data, TRUE), paste0( "Number of non-missing observations 3 in channel `y` ", "is less than 4, the number of predictors \\(including possible ", "intercept\\)\\." ) ) }) test_that("zero predictor warns", { f <- obs(y ~ -1 + x + z, family = "gaussian") test_data <- data.frame( y = rnorm(6), x = c(NA, rnorm(2), NA, rnorm(2)), z = factor(1:3) ) expect_warning( full_model.matrix(f, test_data, TRUE), paste0( "Predictor `z1` contains only zeros in the complete case rows of the ", "design matrix for the channel `y`\\." ) ) }) test_that("deterministic channel insufficient initial values warns", { expect_warning( dynamite( dformula = obs(y ~ x, family = "gaussian") + aux(numeric(d) ~ lag(d, 1)), data = data.frame(y = c(1, 2, 1), x = c(1, 2, 3), z = c(1, 2, 3)), group = NULL, time = "z", debug = list(no_compile = TRUE) ), paste0( "Deterministic channel `d` has a maximum lag of 1 but ", "you've supplied no initial values:\n", "i This may result in NA values for `d`\\." ) ) }) # Specials warnings ------------------------------------------------------- test_that("multiple intercept warns", { expect_warning( obs(y ~ 1 + varying(~1), family = "gaussian"), paste0( "Both time-constant and time-varying intercept specified:\n", "i Defaulting to time-varying intercept\\." ) ) }) test_data <- data.frame( y = rnorm(10), x = rnorm(10), time = 1:5, id = rep(1:2, each = 5) ) debug <- list(no_compile = TRUE) test_that("time-varying intercept is removed", { expect_warning( dynamite( obs(y ~ -1 + x + varying(~1), family = "gaussian") + lfactor() + splines(4), test_data, "time", "id", debug = debug ), paste0( "The common time-varying intercept term of channel `y` was removed ", "as channel predictors contain latent factor specified with ", "`nonzero_lambda` as TRUE\\." ) ) }) test_that("untyped deterministic warns", { expect_warning( aux(y ~ 1 + x), paste0( "No type specified for deterministic channel `y`:\n", "i Assuming type is \\." ) ) }) # Predict warnings -------------------------------------------------------- test_that("too large n_draws warns", { expect_warning( predict(gaussian_example_fit, n_draws = 500), paste0( "You've supplied `n_draws` = 500 but there are only ", ndraws(gaussian_example_fit), " samples available:\n", "i The available samples will be used for prediction\\." ) ) }) test_that("gaps in newdata with exogenous predictors and no impute warns", { newdata <- multichannel_example |> dplyr::mutate(b = ifelse(time > 5, NA, b)) |> dplyr::filter(time < 3 | time > 10) expect_warning( predict(multichannel_example_fit, newdata = newdata, n_draws = 4), paste0( "Time index variable `time` of `newdata` has gaps:\n", "i Filling the `newdata` to regular time points\\. This will lead to ", "propagation of NA values if the model contains exogenous predictors ", "and `impute` is \"none\"\\." ) ) newdata <- gaussian_example |> dplyr::filter(id == 1) |> dplyr::mutate(y = ifelse(time > 5, NA, y)) |> dplyr::filter(time < 3 | time > 10) # capture due to multiple warnings w <- capture_warnings( predict(gaussian_example_single_fit, newdata = newdata, ndraws = 1) ) expect_match( w[1L], paste0( "Time index variable `time` of `newdata` has gaps:\n", "i Filling the `newdata` to regular time points\\. This will lead to ", "propagation of NA values if the model contains exogenous predictors ", "and `impute` is \"none\"\\.|NAs produced" ) ) }) # Stan warnings ----------------------------------------------------------- test_that("unrecognized arguments warns", { expect_warning( dynamite( obs(y ~ x, family = "gaussian") + splines(4), test_data, "time", "id", debug = debug, strange_arg1 = 1L, strange_arg2 = 1L, ), paste0( "Arguments `strange_arg1` and `strange_arg2` passed to rstan sampling ", "function are not recognized and will be ignored\\." ) ) }) test_that("categorical non-glm availability warns", { expect_warning( mockthat::with_mock( dynamite_model = function(...) NULL, dynamite_sampling = function(...) NULL, stan_supports_categorical_logit_glm = function(...) FALSE, dynamite( dformula = obs(y ~ 1, family = "categorical"), data = data.frame(y = c("A", "B"), time = c(1, 2)), time = "time" ) ), paste0( "Efficient GLM variant of the categorical likelihood is not available ", "in this version of rstan\\.\n", "i For more efficient sampling, please install ", "a newer version of rstan\\." ) ) }) test_that("windows and old rstan warns on attach", { out <- mockthat::with_mock( stan_version = function(...) "2.23", is_windows = function(...) TRUE, R_version = function(...) "4.2.0", capture.output(startup(), type = "message") ) expect_match( out[1L], paste0( "Please update your `rstan` and `StanHeaders` installations before ", "using `dynamite` with the `rstan` backend by running:" ) ) }) # Plot warnings ----------------------------------------------------------- test_that("too many parameters warns in plot", { expect_warning( plot(gaussian_example_fit, types = "nu"), paste0( "Number of parameters to be plotted \\(50\\) exceeds the maximum ", "number of parameters \\(20\\) for parameters of type `nu`\\. ", "The remaining parameters of this type will not be plotted\\.\n", "i Please increase `n_params` to plot more parameters\\." ) ) expect_warning( plot(gaussian_example_fit, types = "nu", plot_type = "trace"), paste0( "Number of parameters to be plotted \\(50\\) exceeds the maximum ", "number of parameters \\(5\\)\\. ", "The remaining parameters will not be plotted\\.\n", "i Please increase `n_params` to plot more parameters\\." ) ) }) # Deprecated -------------------------------------------------------------- test_that("deprecated functions warn", { expect_warning( plot_betas(gaussian_example_fit), "'plot_betas' is deprecated" ) expect_warning( plot_deltas(gaussian_example_fit), "'plot_deltas' is deprecated" ) expect_warning( plot_nus(gaussian_example_fit, n_params = 10), "'plot_nus' is deprecated" ) expect_warning( try(plot_lambdas(gaussian_example_fit), silent = TRUE), "'plot_lambdas' is deprecated" ) expect_warning( try(plot_psis(gaussian_example_fit), silent = TRUE), "'plot_psis' is deprecated" ) }) test_that("deprecated cmdstanr arguments warn", { dots <- list(seed = 0, cores = 4, num_sampling = 1000) expect_warning( check_stan_args(dots, verbose = TRUE, backend = "cmdstanr"), ) })