# ================================================================================================== # setup # ================================================================================================== ## Original objects in env ols <- ls() # ================================================================================================== # fuzzy # ================================================================================================== with(persistent, { test_that("Fuzzy clustering gives the same results as references.", { skip_on_cran() local_edition(2) expect_known_value(fc_k, file_name(fc_k)) expect_known_value(fcm, file_name(fcm)) expect_known_value(fcmdd, file_name(fcmdd)) expect_known_value(fcm_mv, file_name(fcm_mv)) expect_known_value(fcmdd_mv, file_name(fcmdd_mv)) # notice files are the same, results should be equal expect_known_value(fcent_fcm, file_name(fcent_fcm), info = "Custom fuzzy c-means") expect_known_value(fcent_fcm_nd, file_name(fcent_fcm), info = "Custom fuzzy c-means") }) }) # ================================================================================================== # hierarchical # ================================================================================================== with(persistent, { test_that("Hierarchical clustering gives the same results as references.", { skip_on_cran() local_edition(2) expect_known_value(hc_k, file_name(hc_k)) expect_known_value(hc_all, file_name(hc_all)) expect_known_value(hc_lbi, file_name(hc_lbi)) expect_known_value(hc_cent, file_name(hc_cent)) expect_known_value(hc_cent2, file_name(hc_cent2), tolerance = 1e-6) expect_known_value(hc_diana, file_name(hc_diana)) }) }) # ================================================================================================== # partitional # ================================================================================================== with(persistent, { test_that("Partitional clustering gives the same results as references.", { skip_on_cran() local_edition(2) expect_known_value(pc_k, file_name(pc_k)) expect_known_value(pc_rep, file_name(pc_rep)) expect_known_value(pc_krep, file_name(pc_krep)) expect_known_value(pc_dtwb, file_name(pc_dtwb)) expect_known_value(pc_dtwb_npampre, file_name(pc_dtwb_npampre)) expect_known_value(pc_dtwb_distmat, file_name(pc_dtwb_distmat)) expect_known_value(pc_dtwlb, file_name(pc_dtwlb)) expect_known_value(pc_kshape, file_name(pc_kshape)) expect_known_value(pc_dba, file_name(pc_dba)) expect_known_value(pc_mv_pam, file_name(pc_mv_pam)) expect_known_value(pc_mv_dba, file_name(pc_mv_dba)) expect_known_value(pc_tadp, file_name(pc_tadp)) expect_known_value(pc_tadp_lbi, file_name(pc_tadp_lbi)) expect_known_value(pc_tadp_cent, file_name(pc_tadp_cent)) expect_known_value(pc_cr, file_name(pc_cr)) # notice files are the same, results should be equal expect_known_value(cent_colMeans, file_name(cent_colMeans), info = "Custom colMeans") expect_known_value(cent_colMeans_nd, file_name(cent_colMeans), info = "Custom colMeans") }) test_that("Partitional clustering with SDTWC gives the same results as references.", { skip_on_cran() skip_if(tolower(Sys.info()[["sysname"]]) == "windows" & isTRUE(as.logical(Sys.getenv("CI"))), "On Windows CI") local_edition(2) expect_known_value(pc_sdtw, file_name(pc_sdtw)) }) }) # ================================================================================================== # clean # ================================================================================================== rm(list = setdiff(ls(), ols))