data("exampleData1") Data <- exampleData1[-c(83:138), ] markers <- Data[, -1] status <- factor(Data$group, levels = c("not_needed", "needed")) load("result_data/test_std.train.rda") for (standardize in c( "range", "zScore", "tScore", "mean", "deviance" )) { res <- std.train(markers, standardize = standardize) test_that("std.train functions ...", { expect_length(res, 2) expect_equal(as.numeric(res$data$ddimer), r$ddimer[r$standardize == standardize], tolerance = 0.01 ) expect_equal(as.numeric(res$data$log_leukocyte), r$log_leukocyte[r$standardize == standardize], tolerance = 0.01 ) }) } ############################################################################### test <- exampleData1[c(83:138), -1] load("result_data/test_std.test.rda") for (standardize in c( "range", "zScore", "tScore", "mean", "deviance" )) { res <- linComb( markers = markers, status = status, event = "needed", method = "SL", resample = "none", standardize = standardize, direction = "<", cutoff.method = "Youden" ) r.std.test <- std.test(test, res) test_that("std.test functions ...", { expect_length(r.std.test, 2) expect_equal(as.numeric(r.std.test$ddimer), r.test$ddimer[r.test$standardize == standardize], tolerance = 0.01 ) expect_equal(as.numeric(r.std.test$log_leukocyte), r.test$log_leukocyte[r.test$standardize == standardize], tolerance = 0.01 ) }) }