# Tests "belplau" function context("Compute belief and plausibility measures") library(dst) test_that("belplau", { # T1 x and y must be of class bcaspec. x1 <- list(f=matrix(c(1,0,0,1,1,1),nrow=2, byrow = TRUE), m=c(0.6, 0.4), cnames = c("a", "b", "c"), varnames = "y1", idvar = 1) expect_error(belplau(x1) , "Input argument not of class bcaspec.") ## # T2 check that the input is a normalized bca x2 <- bca(tt = matrix(c(0,0,0,0,1,1,1,1,0,1,1,1),nrow=4, byrow = TRUE), m=c(0.2,0.1,0.4, 0.3), cnames =c("a", "b", "c"), varnames = "x", idvar = 1) expect_error(belplau(x2) , "Invalid data: Empty set among the focal elements. Normalization necessary. Apply function nzdsr to your bca to normalize your result.") ## # T3 test that m_empty is null, if present x3 <- bca(tt = matrix(c(0,0,0,0,1,1,1,1,0,0,1,0,1,1,1),nrow=5, byrow = TRUE), m=c(0,0.1,0.4,0.1, 0.4), cnames =c("a", "b", "c"), varnames = "x", idvar = 1) result <- belplau(x3) expect_equal(nrow(result), nrow(x3$tt)) # nb of rows of result must match nb of rows of input table x3$tt ## # T4 check the case of a matrix with one row only frame <- bca(matrix(c(1,1,1), nrow=1), m=1, cnames = c("a","b","c")) result <- belplau(frame) target <- c(1,1,Inf) expect_equal(dim(result), c(1,5)) ## T5 test hypotheses x5 <- bca(matrix(c(1,1,0,1,1,1), nrow = 2, byrow = TRUE), c(0.8, 0.2), c(1,2,3)) result <- belplau(x5, h=matrix(c(1,1,0,1,1,1), nrow=2, byrow = TRUE)) expect_equal(unname(x5$spec[1,1]), unname(result[2,1])) })