#------------------------------------------------------------------------------- # Copyright (c) 2018-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up # context("ds.quantileMean::smk::setup") connect.studies.dataset.cnsim(list('LAB_HDL')) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.quantileMean::smk::standard") test_that("quantileMean", { res <- ds.quantileMean(x='D$LAB_HDL') expect_length(res, 8) expect_equal(res[[1]], 0.8678198, tolerance = .000001) expect_equal(res[[2]], 1.0388227, tolerance = .000001) expect_equal(res[[3]], 1.2998328, tolerance = .000001) expect_equal(res[[4]], 1.5787193, tolerance = .000001) expect_equal(res[[5]], 1.8481549, tolerance = .000001) expect_equal(res[[6]], 2.0896969, tolerance = .000001) expect_equal(res[[7]], 2.2302836, tolerance = .000001) expect_equal(res[[8]], 1.5676188, tolerance = .000001) }) context("ds.quantileMean::smk::split") test_that("quantileMean_split", { ds.assign("D$LAB_HDL", "hdl") res <- ds.quantileMean(x='hdl', type='split') expect_length(res, 3) expect_length(res$sim1, 8) expect_equal(res$sim1[[1]], 0.875240, tolerance = .000001) expect_equal(res$sim1[[2]], 1.047400, tolerance = .000001) expect_equal(res$sim1[[3]], 1.300000, tolerance = .000001) expect_equal(res$sim1[[4]], 1.581000, tolerance = .000001) expect_equal(res$sim1[[5]], 1.844500, tolerance = .000001) expect_equal(res$sim1[[6]], 2.090000, tolerance = .000001) expect_equal(res$sim1[[7]], 2.210900, tolerance = .000001) expect_equal(res$sim1[[8]], 1.569416, tolerance = .000001) expect_length(res$sim2, 8) expect_equal(res$sim2[[1]], 0.850280, tolerance = .000001) expect_equal(res$sim2[[2]], 1.032200, tolerance = .000001) expect_equal(res$sim2[[3]], 1.294000, tolerance = .000001) expect_equal(res$sim2[[4]], 1.563000, tolerance = .000001) expect_equal(res$sim2[[5]], 1.840000, tolerance = .000001) expect_equal(res$sim2[[6]], 2.077000, tolerance = .000001) expect_equal(res$sim2[[7]], 2.225000, tolerance = .000001) expect_equal(res$sim2[[8]], 1.556648, tolerance = .000001) expect_length(res$sim3, 8) expect_equal(res$sim3[[1]], 0.876760, tolerance = .000001) expect_equal(res$sim3[[2]], 1.039200, tolerance = .000001) expect_equal(res$sim3[[3]], 1.304000, tolerance = .000001) expect_equal(res$sim3[[4]], 1.589000, tolerance = .000001) expect_equal(res$sim3[[5]], 1.856000, tolerance = .000001) expect_equal(res$sim3[[6]], 2.098800, tolerance = .000001) expect_equal(res$sim3[[7]], 2.244200, tolerance = .000001) expect_equal(res$sim3[[8]], 1.574687, tolerance = .000001) }) # # Tear down # context("ds.quantileMean::smk::shutdown") test_that("shutdown", { ds_expect_variables(c("D", "hdl")) }) disconnect.studies.dataset.cnsim() context("ds.quantileMean::smk::done")