#------------------------------------------------------------------------------- # Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up # context("ds.lspline::smk::setup") connect.studies.dataset.cnsim(list("LAB_TRIG", "PM_BMI_CONTINUOUS")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.lspline::smk::test1") test_that("lspline", { ds.lspline(x="D$PM_BMI_CONTINUOUS", knots=c(15,25,35), newobj="lsplineDS", datasources=ds.test_env$connections) res.class <- ds.class("lsplineDS", datasources=ds.test_env$connections) expect_length(res.class, 3) expect_equal(res.class$sim1[1], "lspline") expect_equal(res.class$sim1[2], "matrix") expect_equal(res.class$sim2[1], "lspline") expect_equal(res.class$sim2[2], "matrix") expect_equal(res.class$sim3[1], "lspline") expect_equal(res.class$sim3[2], "matrix") res.mod <- ds.glm(formula = "D$LAB_TRIG~lsplineDS", family='gaussian', datasources=ds.test_env$connections) expect_length(res.mod, 13) expect_equal(res.mod$Nvalid, 7477) expect_equal(res.mod$Nmissing, 1902) expect_equal(res.mod$Ntotal, 9379) expect_length(res.mod$disclosure.risk, 3) expect_equal(res.mod$disclosure[1], 0) expect_equal(res.mod$disclosure[3], 0) expect_equal(res.mod$disclosure[2], 0) expect_length(res.mod$errorMessage, 3) expect_equal(res.mod$errorMessage[1], "No errors") expect_equal(res.mod$errorMessage[2], "No errors") expect_equal(res.mod$errorMessage[3], "No errors") expect_equal(res.mod$nsubs, 7477) expect_equal(res.mod$iter, 3) expect_true("family" %in% class(res.mod$family)) expect_equal(res.mod$formula, "D$LAB_TRIG ~ lsplineDS") expect_true("matrix" %in% class(res.mod$coefficients)) expect_true("array" %in% class(res.mod$coefficients)) expect_equal(res.mod$coefficients['(Intercept)','Estimate'], -5.46584429, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS1','Estimate'], 0.42499237, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS2','Estimate'], 0.10396672, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS3','Estimate'], 0.05051422, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS4','Estimate'], 0.24522708, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['(Intercept)','Std. Error'], 1.340072623, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS1','Std. Error'], 0.090653306, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS2','Std. Error'], 0.010498879, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS3','Std. Error'], 0.006418973, tolerance = ds.test_env$tolerance) expect_equal(res.mod$coefficients['lsplineDS4','Std. Error'], 0.023139549, tolerance = ds.test_env$tolerance) expect_equal(res.mod$dev, 16909.8, tolerance = ds.test_env$tolerance) expect_equal(res.mod$df, 7472) expect_equal(res.mod$output.information, "SEE TOP OF OUTPUT FOR INFORMATION ON MISSING DATA AND ERROR MESSAGES") }) # # Done # context("ds.lspline::smk::shutdown") test_that("shutdown", { ds_expect_variables(c("D", "LAB_TRIG", "lsplineDS")) }) disconnect.studies.dataset.cnsim() context("ds.qlspline::smk::done")