#------------------------------------------------------------------------------- # Copyright (c) 2018-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up # context("ds.subset::smk::setup") connect.studies.dataset.cnsim(list("DIS_DIAB","PM_BMI_CONTINUOUS","LAB_HDL", "GENDER")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.subset::smk::generate a subset of the assigned table (by default the table is named 'D') with the first 50 observations and the two first columns") ds.subset(datasources=ds.test_env$connections, subset='subD', x='D', rows=c(1:50), cols=c(1,2)) res <- ds.exists('subD') test_that("subD_exists", { expect_length(res, 3) expect_true(res$sim1) expect_true(res$sim2) expect_true(res$sim3) }) context("ds.subset::smk::generate a subset of the assigned table (by default the table is named 'D') with the first 50 observations and the two first columns referred to by their names") ds.subset(subset='subD2', x='D', rows=c(1:50), cols = c('DIS_DIAB','PM_BMI_CONTINUOUS')) res <- ds.exists('subD2') test_that("subD2_exists", { expect_length(res, 3) expect_true(res$sim1) expect_true(res$sim2) expect_true(res$sim3) }) context("ds.subset::smk::generate a subset of the table D with bmi values greater than or equal to 25.") ds.subset(datasources=ds.test_env$connections, subset='subD3', x='D', logical='PM_BMI_CONTINUOUS>=', threshold=25) res <- ds.exists('subD3') test_that("subD3_exists", { expect_length(res, 3) expect_true(res$sim1) expect_true(res$sim2) expect_true(res$sim3) }) # context("ds.subset::smk::get the logarithmic values of the variable 'lab_hdl' and generate a subset with the first 50 observations of that new vector.") # ds.assign(toAssign='log(D$LAB_HDL)', newobj='logHDL') # ds.subset(datasources=ds.test_env$connections, subset="subLAB_HDL", x="logHDL", rows=c(1:50)) # res <- ds.exists('subLAB_HDL') # test_that("subLAB_HDL_exists", { # expect_length(res, 3) # expect_true(res$sim1) # expect_true(res$sim2) # expect_true(res$sim3) # }) # context("ds.subset::smk::get the variable 'PM_BMI_CONTINUOUS' from the dataframe 'D' and generate a subset bmi vector with bmi values greater than or equal to 25") # ds.assign(toAssign='D$PM_BMI_CONTINUOUS', newobj='BMI') # ds.subset(datasources=ds.test_env$connections, subset='subBMI', x='BMI', logical='>=', threshold=25) # res <- ds.exists('subBMI') # test_that("subBMI_exists", { # expect_length(res, 3) # expect_true(res$sim1) # expect_true(res$sim2) # expect_true(res$sim3) # }) # # Tear down # context("ds.subset::smk::shutdown") test_that("shutdown", { ds_expect_variables(c("D", "subD", "subD2", "subD3")) }) disconnect.studies.dataset.cnsim() context("ds.subset::smk::done")