#------------------------------------------------------------------------------- # Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up # context("ds.mice::smk::setup") connect.studies.dataset.cnsim(list("LAB_TSC","LAB_TRIG","LAB_HDL","LAB_GLUC_ADJUSTED", "PM_BMI_CONTINUOUS","DIS_CVA","MEDI_LPD","DIS_DIAB", "DIS_AMI","GENDER","PM_BMI_CATEGORICAL")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.mice::smk::imp1") test_that("mice, initial imputation", { initialImp <- ds.mice(data="D", m=1, method=NULL, predictorMatrix=NULL, post=NULL, seed="NA", newobj_df='impSet') expect_length(initialImp, 3) expect_length(initialImp$sim1, 3) expect_length(initialImp$sim2, 3) expect_length(initialImp$sim3, 3) expect_true("character" %in% class(initialImp$sim1$method)) expect_equal(as.character(initialImp$sim1$method), c("pmm","pmm","pmm","pmm","pmm","","","","","","polyreg")) expect_true("matrix" %in% class(initialImp$sim1$predictorMatrix)) expect_true("array" %in% class(initialImp$sim1$predictorMatrix)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,1]), c(0,1,1,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,2]), c(1,0,1,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,3]), c(1,1,0,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,4]), c(1,1,1,0,1,1,1,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,5]), c(1,1,1,1,0,1,1,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,6]), c(0,0,0,0,0,0,0,0,0,0,0)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,7]), c(1,1,1,1,1,1,0,1,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,8]), c(1,1,1,1,1,1,1,0,1,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,9]), c(1,1,1,1,1,1,1,1,0,1,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,10]), c(1,1,1,1,1,1,1,1,1,0,1)) expect_equal(as.numeric(initialImp$sim1$predictorMatrix[,11]), c(1,1,1,1,1,1,1,1,1,1,0)) expect_true("character" %in% class(initialImp$sim1$post)) expect_equal(as.character(initialImp$sim1$post), c("","","","","","","","","","","")) numNA_bmi <- ds.numNA('impSet.1$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi$sim1, 0) expect_equal(numNA_bmi$sim2, 0) expect_equal(numNA_bmi$sim3, 0) }) context("ds.mice::smk::imp2") test_that("mice, second imputation", { initialImp <- ds.mice(data="D", m=1, method=NULL, predictorMatrix=NULL, post=NULL, seed="NA", newobj_df='impSet') method <- initialImp$sim1$method method["LAB_TRIG"] <- "norm" predictorMatrix <- initialImp$sim1$predictorMatrix predictorMatrix[,"LAB_GLUC_ADJUSTED"] <- 0 post <- initialImp$sim1$post post["PM_BMI_CONTINUOUS"] <- "imp[[j]][, i] <- squeeze(imp[[j]][, i], c(15,35))" newImp <- ds.mice(data='D', m=5, maxit=10, method=method, post=post, predictorMatrix=predictorMatrix, seed=NA, newobj_df='imp_new', newobj_mids='mids_new') expect_length(newImp, 3) expect_length(newImp$sim1, 3) expect_length(newImp$sim2, 3) expect_length(newImp$sim3, 3) expect_true("character" %in% class(newImp$sim1$method)) expect_equal(as.character(newImp$sim1$method), c("pmm","norm","pmm","pmm","pmm","","","","","","polyreg")) expect_true("matrix" %in% class(newImp$sim1$predictorMatrix)) expect_true("array" %in% class(newImp$sim1$predictorMatrix)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,1]), c(0,1,1,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,2]), c(1,0,1,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,3]), c(1,1,0,1,1,1,1,1,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,4]), c(0,0,0,0,0,0,0,0,0,0,0)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,5]), c(1,1,1,1,0,1,1,1,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,6]), c(0,0,0,0,0,0,0,0,0,0,0)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,7]), c(1,1,1,1,1,1,0,1,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,8]), c(1,1,1,1,1,1,1,0,1,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,9]), c(1,1,1,1,1,1,1,1,0,1,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,10]), c(1,1,1,1,1,1,1,1,1,0,1)) expect_equal(as.numeric(newImp$sim1$predictorMatrix[,11]), c(1,1,1,1,1,1,1,1,1,1,0)) expect_true("character" %in% class(newImp$sim1$post)) expect_equal(as.character(newImp$sim1$post), c("","","","","imp[[j]][,i]<-squeeze(imp[[j]][,i],c(15,35))","","","","","","")) numNA_bmi.1 <- ds.numNA('imp_new.1$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi.1$sim1, 0) expect_equal(numNA_bmi.1$sim2, 0) expect_equal(numNA_bmi.1$sim3, 0) numNA_bmi.2 <- ds.numNA('imp_new.2$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi.2$sim1, 0) expect_equal(numNA_bmi.2$sim2, 0) expect_equal(numNA_bmi.2$sim3, 0) numNA_bmi.3 <- ds.numNA('imp_new.3$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi.3$sim1, 0) expect_equal(numNA_bmi.3$sim2, 0) expect_equal(numNA_bmi.3$sim3, 0) numNA_bmi.4 <- ds.numNA('imp_new.4$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi.4$sim1, 0) expect_equal(numNA_bmi.4$sim2, 0) expect_equal(numNA_bmi.4$sim3, 0) numNA_bmi.5 <- ds.numNA('imp_new.5$PM_BMI_CONTINUOUS') expect_equal(numNA_bmi.5$sim1, 0) expect_equal(numNA_bmi.5$sim2, 0) expect_equal(numNA_bmi.5$sim3, 0) }) # # Done # context("ds.mice::smk::shutdown") test_that("shutdown", { ds_expect_variables(c("D", "impSet.1", "imp_new.1","imp_new.2","imp_new.3","imp_new.4","imp_new.5", "mids_new","mids_object")) }) disconnect.studies.dataset.cnsim() context("ds.mice::smk::done")