#------------------------------------------------------------------------------- # Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up phase 1 # context("ds.lmerSLMA::smk::setup phase 1") connect.studies.dataset.cluster.int(list("incid_rate", "trtGrp", "Male", "idDoctor", "BMI", "idSurgery")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.lmerSLMA::smk::phase 1") test_that("simple lmerSLMA", { res <- ds.lmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', dataName = "D") expect_length(res, 8) }) ## try some different formulae structures? test_that("alternative formulae for nested groups", { res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idSurgery/idDoctor)', dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idSurgery) +(1|idSurgery:idDoctor)', dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") # different behaviour for normal DS versus DSLite... #res = ds.lmerSLMA(formula = 'D$BMI ~ D$trtGrp + D$Male + (1|D$idSurgery)') #expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', dataName = "D", combine.with.metafor = FALSE) expect_length(res, 5) }) test_that("server side error", { res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idSurgery)', dataName = 'D', optimizer = 'nloptwrap') expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res=ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idSurgery)', dataName = 'D', optimizer = 'not_this_one') expect_equal(res$errorMessage, "ERROR: the only optimizer currently available for lmer is 'nloptwrap', please respecify") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', dataName = "D", REML = FALSE) expect_equal(res$output.summary$study1$methTitle, "Linear mixed model fit by maximum likelihood ") }) test_that("test offsets and weights", { ds.make('D$BMI/D$BMI', "some.weights") ds.make('D$BMI/D$BMI', "some.offsets") ds.dataFrame(x=c("D", "some.weights", "some.offsets"), newobj = "D2") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', weights = "some.weights", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', offset = "some.offsets", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', weights = "D2$some.weights", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor)', offset = "D2$some.offsets", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") }) # # Shutdown # context("ds.lmerSLMA::smk::shutdown phase 1") test_that("shutdown", { #note the offset and weights objects below are artefacts ds_expect_variables(c("D", "D2", "offset", "some.offsets", "some.weights", "weights")) }) disconnect.studies.dataset.cluster.int() # # Set up # context("ds.lmerSLMA::smk::setup phase 2") connect.studies.dataset.cluster.slo(list("incid_rate", "trtGrp", "Male", "idDoctor", "BMI", "idSurgery")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.lmerSLMA::smk::test phase 2") test_that("check slope formulae", { res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor) + (1|idSurgery) + (0+trtGrp|idSurgery)', dataName = 'D', control_type = 'check.conv.grad',control_value = 0.1) expect_length(res, 8) expect_length(res$output.summary, 5) expect_equal(class(res$output.summary), "list") expect_length(res$num.valid.studies, 1) expect_equal(class(res$num.valid.studies), "numeric") expect_length(res$betamatrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.all), 1) expect_true("matrix" %in% class(res$betamatrix.all)) } else { expect_length(class(res$betamatrix.all), 2) expect_true("matrix" %in% class(res$betamatrix.all)) expect_true("array" %in% class(res$betamatrix.all)) } expect_length(res$sematrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.all), 1) expect_true("matrix" %in% class(res$sematrix.all)) } else { expect_length(class(res$sematrix.all), 2) expect_true("matrix" %in% class(res$sematrix.all)) expect_true("array" %in% class(res$sematrix.all)) } expect_length(res$betamatrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.valid), 1) expect_true("matrix" %in% class(res$betamatrix.valid)) } else { expect_length(class(res$betamatrix.valid), 2) expect_true("matrix" %in% class(res$betamatrix.valid)) expect_true("array" %in% class(res$betamatrix.valid)) } expect_length(res$sematrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.valid), 1) expect_true("matrix" %in% class(res$sematrix.valid)) } else { expect_length(class(res$sematrix.valid), 2) expect_true("matrix" %in% class(res$sematrix.valid)) expect_true("array" %in% class(res$sematrix.valid)) } expect_length(res$SLMA.pooled.ests.matrix, 18) if (base::getRversion() < '4.0.0') { expect_length(class(res$SLMA.pooled.ests.matrix), 1) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) } else { expect_length(class(res$SLMA.pooled.ests.matrix), 2) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) expect_true("array" %in% class(res$SLMA.pooled.ests.matrix)) } expect_length(res$Convergence.error.message, 3) expect_equal(class(res$Convergence.error.message), "character") }) test_that("check slope formulae", { res = ds.lmerSLMA(formula = 'BMI ~ trtGrp + Male + (1|idDoctor) + (trtGrp||idSurgery)', dataName = 'D', control_type = 'check.conv.grad',control_value = 0.1) expect_length(res, 8) expect_length(res$output.summary, 5) expect_equal(class(res$output.summary), "list") expect_length(res$num.valid.studies, 1) expect_equal(class(res$num.valid.studies), "numeric") expect_length(res$betamatrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.all), 1) expect_true("matrix" %in% class(res$betamatrix.all)) } else { expect_length(class(res$betamatrix.all), 2) expect_true("matrix" %in% class(res$betamatrix.all)) expect_true("array" %in% class(res$betamatrix.all)) } expect_length(res$sematrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.all), 1) expect_true("matrix" %in% class(res$sematrix.all)) } else { expect_length(class(res$sematrix.all), 2) expect_true("matrix" %in% class(res$sematrix.all)) expect_true("array" %in% class(res$sematrix.all)) } expect_length(res$betamatrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.valid), 1) expect_true("matrix" %in% class(res$betamatrix.valid)) } else { expect_length(class(res$betamatrix.valid), 2) expect_true("matrix" %in% class(res$betamatrix.valid)) expect_true("array" %in% class(res$betamatrix.valid)) } expect_length(res$sematrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.valid), 1) expect_true("matrix" %in% class(res$sematrix.valid)) } else { expect_length(class(res$sematrix.valid), 2) expect_true("matrix" %in% class(res$sematrix.valid)) expect_true("array" %in% class(res$sematrix.valid)) } expect_length(res$SLMA.pooled.ests.matrix, 18) if (base::getRversion() < '4.0.0') { expect_length(class(res$SLMA.pooled.ests.matrix), 1) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) } else { expect_length(class(res$SLMA.pooled.ests.matrix), 2) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) expect_true("array" %in% class(res$SLMA.pooled.ests.matrix)) } expect_length(res$Convergence.error.message, 3) expect_equal(class(res$Convergence.error.message), "character") }) # # Shutdown # context("ds.lmerSLMA::smk::shutdown phase 2") test_that("shutdown", { ds_expect_variables(c("D", "offset", "weights")) }) disconnect.studies.dataset.cluster.slo() # # Done # context("ds.lmerSLMA::smk::done")