#------------------------------------------------------------------------------- # Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up Phase 1 # context("ds.glmerSLMA::smk::setup - phase 1") connect.studies.dataset.cluster.int(list("incid_rate", "trtGrp", "Male", "idDoctor", "idSurgery")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests Phase 1 # context("ds.glmerSLMA::smk::phase 1") test_that("simple glmerSLMA tesing (mis)use of arguments", { res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', dataName = "D", start_theta = c(1)) expect_length(res, 8) res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', dataName = "D", start_fixef = c(1,1,1), start_theta = c(1)) expect_length(res, 8) }) test_that("test offsets and weights", { ds.make('D$incid_rate/D$incid_rate', "some.weights") ds.make('D$incid_rate/D$incid_rate', "some.offsets") ds.dataFrame(x=c("D", "some.weights", "some.offsets"), newobj = "D2") res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', weights = "some.weights", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', offset = "some.offsets", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', weights = "D2$some.weights", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family='poisson', offset = "D2$some.offsets", dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") }) ## try some different formulae structures? test_that("alternative formulae for nested groups", { res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idSurgery/idDoctor)', family='poisson', dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idSurgery) +(1|idSurgery:idDoctor)', family='poisson', dataName = "D") expect_equal(res$Convergence.error.message[2], "Study2: no convergence error reported") }) test_that("simple glmerSLMA", { res <- ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family="poisson", dataName = "D") expect_length(res, 8) }) test_that("simple glmerSLMA with assign=TRUE", { res <- ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', family="poisson", assign=TRUE, newobj="glmerSLMA.assigned", dataName = "D") expect_length(res, 8) }) # # Shutdown phase 1 # context("ds.glmerSLMA::smk::shutdown - phase 1") test_that("setup", { #note the offset and weights objects below are artefacts ds_expect_variables(c("D", "D2", "offset", "some.offsets", "some.weights", "weights", "glmerSLMA.assigned")) }) disconnect.studies.dataset.cluster.int() # # Set up phase 2 # context("ds.glmerSLMA::smk::setup - phase 2") connect.studies.dataset.cluster.slo(list("incid_rate", "trtGrp", "Male", "idDoctor", "BMI", "idSurgery")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests phase 2 # context("ds.glmerSLMA::smk::test - phase 2") test_that("check slope formulae - 1", { res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor) + (1|idSurgery) + (0+trtGrp|idSurgery)', family='poisson', dataName = 'D', control_type = 'check.conv.grad', control_value = 0.1) expect_length(res, 8) expect_length(res$output.summary, 5) expect_equal(class(res$output.summary), "list") expect_length(res$num.valid.studies, 1) expect_equal(class(res$num.valid.studies), "numeric") expect_length(res$betamatrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.all), 1) expect_true("matrix" %in% class(res$betamatrix.all)) } else { expect_length(class(res$betamatrix.all), 2) expect_true("matrix" %in% class(res$betamatrix.all)) expect_true("array" %in% class(res$betamatrix.all)) } expect_length(res$sematrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.all), 1) expect_true("matrix" %in% class(res$sematrix.all)) } else { expect_length(class(res$sematrix.all), 2) expect_true("matrix" %in% class(res$sematrix.all)) expect_true("array" %in% class(res$sematrix.all)) } expect_length(res$betamatrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.valid), 1) expect_true("matrix" %in% class(res$betamatrix.valid)) } else { expect_length(class(res$betamatrix.valid), 2) expect_true("matrix" %in% class(res$betamatrix.valid)) expect_true("array" %in% class(res$betamatrix.valid)) } expect_length(res$sematrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.valid), 1) expect_true("matrix" %in% class(res$sematrix.valid)) } else { expect_length(class(res$sematrix.valid), 2) expect_true("matrix" %in% class(res$sematrix.valid)) expect_true("array" %in% class(res$sematrix.valid)) } expect_length(res$SLMA.pooled.ests.matrix, 18) if (base::getRversion() < '4.0.0') { expect_length(class(res$SLMA.pooled.ests.matrix), 1) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) } else { expect_length(class(res$SLMA.pooled.ests.matrix), 2) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) expect_true("array" %in% class(res$SLMA.pooled.ests.matrix)) } expect_length(res$Convergence.error.message, 3) expect_equal(class(res$Convergence.error.message), "character") }) test_that("check slope formulae - 2", { res = ds.glmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor) + (trtGrp||idSurgery)', family='poisson', dataName = 'D', control_type = 'check.conv.grad', control_value = 0.1) expect_length(res, 8) expect_length(res$output.summary, 5) expect_equal(class(res$output.summary), "list") expect_length(res$num.valid.studies, 1) expect_equal(class(res$num.valid.studies), "numeric") expect_length(res$betamatrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.all), 1) expect_true("matrix" %in% class(res$betamatrix.all)) } else { expect_length(class(res$betamatrix.all), 2) expect_true("matrix" %in% class(res$betamatrix.all)) expect_true("array" %in% class(res$betamatrix.all)) } expect_length(res$sematrix.all, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.all), 1) expect_true("matrix" %in% class(res$sematrix.all)) } else { expect_length(class(res$sematrix.all), 2) expect_true("matrix" %in% class(res$sematrix.all)) expect_true("array" %in% class(res$sematrix.all)) } expect_length(res$betamatrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$betamatrix.valid), 1) expect_true("matrix" %in% class(res$betamatrix.valid)) } else { expect_length(class(res$betamatrix.valid), 2) expect_true("matrix" %in% class(res$betamatrix.valid)) expect_true("array" %in% class(res$betamatrix.valid)) } expect_length(res$sematrix.valid, 9) if (base::getRversion() < '4.0.0') { expect_length(class(res$sematrix.valid), 1) expect_true("matrix" %in% class(res$sematrix.valid)) } else { expect_length(class(res$sematrix.valid), 2) expect_true("matrix" %in% class(res$sematrix.valid)) expect_true("array" %in% class(res$sematrix.valid)) } expect_length(res$SLMA.pooled.ests.matrix, 18) if (base::getRversion() < '4.0.0') { expect_length(class(res$SLMA.pooled.ests.matrix), 1) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) } else { expect_length(class(res$SLMA.pooled.ests.matrix), 2) expect_true("matrix" %in% class(res$SLMA.pooled.ests.matrix)) expect_true("array" %in% class(res$SLMA.pooled.ests.matrix)) } expect_length(res$Convergence.error.message, 3) expect_equal(class(res$Convergence.error.message), "character") }) # # Shutdown phase 2 # context("ds.glmerSLMA::smk::shutdown - phase 2") test_that("setup", { ds_expect_variables(c("D", "offset", "weights")) }) disconnect.studies.dataset.cluster.slo() # # Done # context("ds.glmerSLMA::smk::done")