#------------------------------------------------------------------------------- # Copyright (c) 2019-2022 University of Newcastle upon Tyne. All rights reserved. # # This program and the accompanying materials # are made available under the terms of the GNU Public License v3.0. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . #------------------------------------------------------------------------------- # # Set up # context("ds.lmerSLMA::arg::setup") connect.studies.dataset.cluster.int(list("incid_rate", "trtGrp", "Male", "idDoctor", "BMI", "idSurgery")) test_that("setup", { ds_expect_variables(c("D")) }) # # Tests # context("ds.lmerSLMA::arg") test_that("simple lmerSLMA tesing (mis)use of arguments", { res <- ds.lmerSLMA(formula = 'incid_rate ~ trtGrp + Male', dataName = 'D') expect_equal(res$study1$errorMessage, "No random effects terms specified in formula", fixed=TRUE) expect_error(ds.lmerSLMA(formula = 'diab_dis ~ trtGrp + Male + (1|idDoctor)', dataName = 'D'), "There are some DataSHIELD errors, list them with datashield.errors()", fixed=TRUE) errs <- datashield.errors() expect_length(errs, 3) expect_length(errs$sim1, 0) expect_length(errs$sim2, 0) expect_length(errs$sim3, 0) res <- ds.lmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', dataName = 'D', control_type = 'xtol_rel') expect_equal(res$errorMessage, "ERROR: if control_type is non-null, you must specify a valid control_value eg control_value<-1.0e-7", fixed=TRUE) # res <- ds.lmerSLMA(formula = 'incid_rate ~ trtGrp + Male + (1|idDoctor)', dataName = 'D', control_type = 'xtol_rel',control_value = 'nothing') # expect_equal(res$study1$errorMessage, "REAL() can only be applied to a 'numeric', not a 'logical'", fixed=TRUE) expect_error(ds.lmerSLMA(), " Please provide a valid regression formula!", fixed=TRUE) }) # # Shutdown # context("ds.lmerSLMA::arg::shutdown") test_that("shutdown", { ds_expect_variables(c("D", "offset", "offset.to.use", "weights", "weights.to.use")) }) disconnect.studies.dataset.cluster.int() # # Done # context("ds.lmerSLMA::arg::done")