test_that("MCMC: linear binary logit", { n_chains <- 2 link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains) # dreamer post test_posterior( mcmc, doses = c(1, 3, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr(ilogit(b1 + b2 * dose)) ) # with dose adjustment test_posterior( mcmc, doses = c(1, 3, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr( ilogit(b1 + b2 * dose) - ilogit(b1 + b2 * reference_dose) ) ) }) test_that("MCMC: linear binary probit", { n_chains <- 2 link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains) # dreamer post test_posterior( mcmc, doses = c(1, 3, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr(iprobit(b1 + b2 * dose)) ) # with dose adjustment test_posterior( mcmc, doses = c(1, 3, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr( iprobit(b1 + b2 * dose) - iprobit(b1 + b2 * reference_dose) ) ) }) test_that("MCMC: linear binary logit long linear", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr(ilogit(a + time / !!t_max * (b1 + b2 * dose))) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr( ilogit(a + (time / !!t_max) * (b1 + b2 * dose)) - ilogit((a + time / !!t_max * (b1 + b2 * reference_dose))) ) ) }) test_that("MCMC: linear binary probit long linear", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr(iprobit(a + time / !!t_max * (b1 + b2 * dose))) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr( iprobit(a + (time / !!t_max) * (b1 + b2 * dose)) - iprobit((a + time / !!t_max * (b1 + b2 * reference_dose))) ) ) }) test_that("MCMC: linear binary logit long ITP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_itp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) - ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * reference_dose) ) ) ) }) test_that("MCMC: linear binary probit long ITP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_itp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) - iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * reference_dose) ) ) ) }) test_that("MCMC: linear binary logit long IDP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_idp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), a = 10:1 / 100, b1 = 1:10 / 100, b2 = 2:11 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) - ilogit( ( a + (b1 + b2 * reference_dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) ) }) test_that("MCMC: linear binary probit long IDP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_idp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), a = 10:1 / 100, b1 = 1:10 / 100, b2 = 2:11 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) - iprobit( ( a + (b1 + b2 * reference_dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) ) })