test_that("MCMC: independent", { n_chains <- 2 data <- dreamer_data_independent( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1:3, sigma = 2 ) mcmc <- dreamer_mcmc( data, mod = model_independent( mu_b1 = 0, sigma_b1 = 1, shape = 1, rate = .01 ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) doses <- attr(mcmc, "doses") assert_mcmc_format(mcmc, n_chains) # dreamer post test_posterior( mcmc, doses = doses, prob = c(.25, .75), `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( matrix(c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3)[, which(dose == !!doses)] ) ) # with dose adjustment test_posterior( mcmc, doses = c(1, 3, 5), reference_dose = 3, prob = c(.25, .75), `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(dose == !!doses)] - matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(reference_dose == !!doses)] ) ) }) test_that("MCMC: independent long linear", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) data <- dreamer_data_independent( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1:3, sigma = 2, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_independent( mu_b1 = 0, sigma_b1 = 1, shape = 1, rate = .01, longitudinal = model_longitudinal_linear(0, 1, t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) doses <- attr(mcmc, "doses") assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), prob = c(.25, .75), a = 10:1 / 100, `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( a + (time / !!t_max) * matrix(c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3)[, which(dose == !!doses)] ) ) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), reference_dose = 3, prob = c(.25, .75), a = 10:1 / 100, `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( a + (time / !!t_max) * matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(dose == !!doses)] - ( a + (time / !!t_max) * matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(reference_dose == !!doses)] ) ) ) }) test_that("MCMC: independent long ITP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) data <- dreamer_data_independent( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1:3, sigma = 2, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_independent( mu_b1 = 0, sigma_b1 = 1, shape = 1, rate = .01, longitudinal = model_longitudinal_itp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) doses <- attr(mcmc, "doses") assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), prob = c(.25, .75), a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * matrix(c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3)[, which(dose == !!doses)] ) ) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), reference_dose = 3, prob = c(.25, .75), a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, true_responses = rlang::expr( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(dose == !!doses)] - (a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(reference_dose == !!doses)]) ) ) }) test_that("MCMC: independent long IDP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) data <- dreamer_data_independent( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1:3, sigma = 2, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_independent( mu_b1 = 0, sigma_b1 = 1, shape = 1, rate = .01, longitudinal = model_longitudinal_idp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) doses <- attr(mcmc, "doses") assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), prob = c(.25, .75), `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( a + matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(dose == !!doses)] * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + ( 1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1))) ) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) test_posterior( mcmc, doses = doses, times = c(1, 5, 2), reference_dose = 3, prob = c(.25, .75), `b1[1]` = 1:10 / 100, `b1[2]` = 2:11 / 100, `b1[3]` = 3:12 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(- .1, - .02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( a + matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(dose == !!doses)] * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) - ( a + matrix( c(`b1[1]`, `b1[2]`, `b1[3]`), ncol = 3 )[, which(reference_dose == !!doses)] * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) })