test_that("get_dose() exp binary logit", { link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_exp_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, link = link ), n_iter = 2, n_chains = 1, silent = TRUE, convergence_warn = FALSE ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(2, 2.1) mcmc <- mcmc %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) dose <- 2 get_dose( mcmc$mod, time = NULL, response = ilogit(b1 + b2 * (1 - exp(- b3 * dose))), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) }) test_that("get_dose() exp binary probit", { link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_exp_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, link = link ), n_iter = 2, n_chains = 1, silent = TRUE, convergence_warn = FALSE ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(2, 2.1) mcmc <- mcmc %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) dose <- 2 get_dose( mcmc$mod, time = NULL, response = iprobit(b1 + b2 * (1 - exp(- b3 * dose))), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) }) test_that("get_dose() quad binary logit longitudinal", { link <- "logit" times <- c(0, 10) t_max <- max(times) data <- dreamer_data_linear_binary( n_cohorts = c(10, 25, 30), dose = c(0, 2, 4), b1 = .5, b2 = 3, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data = data, n_iter = 2, n_chains = 1, convergence_warn = FALSE, silent = TRUE, mod = model_exp_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ) ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) a <- c(.1, .2) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(2, 2) mcmc <- mcmc %>% replace_mcmc("mod", "a", a) %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) time <- 3 dose <- 2 get_dose( mcmc$mod, time = time, response = ilogit(a + time / t_max * (b1 + b2 * (1 - exp(- b3 * dose)))), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) }) test_that("get_dose() quad binary probit longitudinal", { link <- "probit" times <- c(0, 10) t_max <- max(times) data <- dreamer_data_linear_binary( n_cohorts = c(10, 25, 30), dose = c(0, 2, 4), b1 = .5, b2 = 3, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data = data, n_iter = 2, n_chains = 1, convergence_warn = FALSE, silent = TRUE, mod = model_exp_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ) ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) a <- c(.1, .2) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(.02, .02) mcmc <- mcmc %>% replace_mcmc("mod", "a", a) %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) time <- 3 dose <- 2 get_dose( mcmc$mod, time = time, response = iprobit(a + time / t_max * (b1 + b2 * (1 - exp(- b3 * dose)))), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) })