test_that("get_dose() beta", { data <- dreamer_data_linear(n_cohorts = c(10, 20, 30), c(1, 3, 5), 1, 2, 2) mcmc <- dreamer_mcmc( data, mod = model_beta( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, mu_b4 = 0, sigma_b4 = 1, shape = 1, rate = .01 ), n_iter = 2, n_chains = 1, silent = TRUE, convergence_warn = FALSE ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(2.2, 2) b4 <- c(.99, 1.01) mcmc <- mcmc %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) %>% replace_mcmc("mod", "b4", b4) scale <- attr(mcmc$mod, "scale") dose <- 2 get_dose( mcmc$mod, time = NULL, response = (b1 + b2 * ((b3 + b4) ^ (b3 + b4)) / (b3 ^ b3 * b4 ^ b4) * (dose / scale) ^ b3 * (1 - dose / scale) ^ b4), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) }) test_that("get_dose() beta longitudinal", { times <- c(0, 10) t_max <- max(times) data <- dreamer_data_linear( n_cohorts = c(10, 25, 30), dose = c(0, 2, 4), b1 = .5, b2 = 3, sigma = .5, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data = data, n_iter = 2, n_chains = 1, convergence_warn = FALSE, silent = TRUE, mod = model_beta( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, mu_b4 = 0, sigma_b4 = 1, shape = 1, rate = .01, longitudinal = model_longitudinal_linear(0, 1, t_max) ) ) lower <- min(attr(mcmc, "doses")) upper <- max(attr(mcmc, "doses")) a <- c(.1, .2) b1 <- 1:2 b2 <- c(- 1, 1) b3 <- c(1.98, 2) b4 <- c(.99, 1.01) mcmc <- mcmc %>% replace_mcmc("mod", "a", a) %>% replace_mcmc("mod", "b1", b1) %>% replace_mcmc("mod", "b2", b2) %>% replace_mcmc("mod", "b3", b3) %>% replace_mcmc("mod", "b4", b4) time <- 3 dose <- 2 scale <- attr(mcmc$mod, "scale") get_dose( mcmc$mod, time = time, response = a + time / t_max * ((b1 + b2 * ((b3 + b4) ^ (b3 + b4)) / (b3 ^ b3 * b4 ^ b4) * (dose / scale) ^ b3 * (1 - dose / scale) ^ b4)), lower = lower, upper = upper ) %>% expect_equal(rep(dose, 2)) })