test_that("Constructor (decreasing)", { x <- lltd$D$x y <- lltd$D$y m <- length(unique(x)) n <- length(y) w <- rep(1, n) max_iter <- 10000 stats <- lltd$stats_1 start <- c(1, 1) lower_bound <- c(0.5, 1) upper_bound <- c(2, 5) object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(1, -1, NA_real_, NA_real_)) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- loglogistic2_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(1, -1, log(start))) expect_equal(object$lower_bound, log(lower_bound)) expect_equal(object$upper_bound, log(upper_bound)) w <- lltd$D$w stats <- lltd$stats_2 object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(1, -1, NA_real_, NA_real_)) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- loglogistic2_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(1, -1, log(start))) expect_equal(object$lower_bound, log(lower_bound)) expect_equal(object$upper_bound, log(upper_bound)) }) test_that("Constructor (increasing)", { x <- lltd$D$x y <- rev(lltd$D$y) m <- length(unique(x)) n <- length(y) w <- rep(1, n) max_iter <- 10000 stats <- lltd$stats_1_i start <- c(1, 1) lower_bound <- c(0.5, 1) upper_bound <- c(2, 5) object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, NA_real_, NA_real_)) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- loglogistic2_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, log(start))) expect_equal(object$lower_bound, log(lower_bound)) expect_equal(object$upper_bound, log(upper_bound)) w <- lltd$D$w stats <- lltd$stats_2_i object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, NA_real_, NA_real_)) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- loglogistic2_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "loglogistic2")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, m) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, log(start))) expect_equal(object$lower_bound, log(lower_bound)) expect_equal(object$upper_bound, log(upper_bound)) }) test_that("Constructor: errors", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w max_iter <- 10000 expect_error( loglogistic2_new(x, y, w, 1, max_iter, NULL, NULL), "'start' must be of length 2" ) expect_error( loglogistic2_new(x, y, w, c(1, 1, 1), max_iter, NULL, NULL), "'start' must be of length 2" ) expect_error( loglogistic2_new(x, y, w, c(0, 1), max_iter, NULL, NULL), "parameter 'eta' cannot be negative nor zero" ) expect_error( loglogistic2_new(x, y, w, c(-1, 1), max_iter, NULL, NULL), "parameter 'eta' cannot be negative nor zero" ) expect_error( loglogistic2_new(x, y, w, c(1, 0), max_iter, NULL, NULL), "parameter 'phi' cannot be negative nor zero" ) expect_error( loglogistic2_new(x, y, w, c(1, -1), max_iter, NULL, NULL), "parameter 'phi' cannot be negative nor zero" ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, -Inf, Inf), "'lower_bound' must be of length 2" ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, -Inf, rep(Inf, 2)), "'lower_bound' must be of length 2" ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, rep(-Inf, 2), Inf), "'upper_bound' must be of length 2" ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, rep(-Inf, 2), c(0, Inf)), "'upper_bound[1]' cannot be negative nor zero", fixed = TRUE ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, rep(-Inf, 2), c(-1, Inf)), "'upper_bound[1]' cannot be negative nor zero", fixed = TRUE ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, rep(-Inf, 2), c(Inf, 0)), "'upper_bound[2]' cannot be negative nor zero", fixed = TRUE ) expect_error( loglogistic2_new(x, y, w, NULL, max_iter, rep(-Inf, 2), c(Inf, -1)), "'upper_bound[2]' cannot be negative nor zero", fixed = TRUE ) }) test_that("Function value (decreasing)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d theta[2] <- -0.5 m <- length(x) true_value <- c( 1, 0.86206896551724138, 0.60975609756097561, 0.40983606557377049, 0.28089887640449438, 0.20000000000000000, 0.0024937655860349127, 0.000024999375015624609 ) value <- loglogistic2_fn(x, theta) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) object <- structure(list(stats = lltd$stats_1), class = "loglogistic2") value <- fn(object, object$stats[, 1], theta) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) object <- structure(list(stats = lltd$stats_1), class = "loglogistic2_fit") value <- fn(object, object$stats[, 1], c(1, -1, theta[3:4])) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) }) test_that("Function value (increasing)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_i theta[2] <- 0.5 m <- length(x) true_value <- c( 0, 0.13793103448275862, 0.39024390243902439, 0.59016393442622951, 0.71910112359550562, 0.80000000000000000, 0.99750623441396509, 0.99997500062498438 ) value <- loglogistic2_fn(x, theta) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) object <- structure(list(stats = lltd$stats_1), class = "loglogistic2") value <- fn(object, object$stats[, 1], theta) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) object <- structure(list(stats = lltd$stats_1), class = "loglogistic2_fit") value <- fn(object, object$stats[, 1], c(0, 1, theta[3:4])) expect_type(value, "double") expect_length(value, m) expect_equal(value, true_value) }) test_that("Gradient (1)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_gradient <- matrix( c( # eta 0, 0.10895252459859157, 0.053097811139609698, -0.044098199708293245, -0.094938240978812888, -0.11090354888959125, -0.0074520239887910921, -0.00013245131151534308, # phi 0, 0.047562425683709869, 0.095181439619274242, 0.096748185971513034, 0.080797879055674789, 0.064, 0.00099501868769472827, 9.9995000187493750e-06 ), nrow = m, ncol = 2 ) G <- loglogistic2_gradient(x, theta, -1) expect_type(G, "double") expect_length(G, m * 2) expect_equal(G, true_gradient) }) test_that("Hessian (1)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_hessian <- array( c( # (eta, eta) 0, -0.072292274433916804, -0.0026008757878617911, 0.0014498455188343302, 0.019553161738827894, 0.046123489336147337, 0.022212925780153336, 0.00070173399644679443, # (eta, phi) 0, -0.0077774494556681395, 0.042928472977866513, 0.045193239236305857, 0.023758079311326371, 0.0053831482664981001, -0.0024684333708934296, -0.000047978125636756238, # (phi, eta) 0, -0.0077774494556681395, 0.042928472977866513, 0.045193239236305857, 0.023758079311326371, 0.0053831482664981001, -0.0024684333708934296, -0.000047978125636756238, # (phi, phi) 0, -0.023289187748575177, -0.027393682622132587, -0.01237107951766888, -0.0019972509429492644, 0.00256, 0.00019701866285027787, 1.9997000187491250e-06 ), dim = c(m, 2, 2) ) H <- loglogistic2_hessian(x, theta, -1) expect_type(H, "double") expect_length(H, m * 2 * 2) expect_equal(H, true_hessian) }) test_that("Gradient and Hessian (1)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_gradient <- matrix( c( # eta 0, 0.10895252459859157, 0.053097811139609698, -0.044098199708293245, -0.094938240978812888, -0.11090354888959125, -0.0074520239887910921, -0.00013245131151534308, # phi 0, 0.047562425683709869, 0.095181439619274242, 0.096748185971513034, 0.080797879055674789, 0.064, 0.00099501868769472827, 9.9995000187493750e-06 ), nrow = m, ncol = 2 ) true_hessian <- array( c( # (eta, eta) 0, -0.072292274433916804, -0.0026008757878617911, 0.0014498455188343302, 0.019553161738827894, 0.046123489336147337, 0.022212925780153336, 0.00070173399644679443, # (eta, phi) 0, -0.0077774494556681395, 0.042928472977866513, 0.045193239236305857, 0.023758079311326371, 0.0053831482664981001, -0.0024684333708934296, -0.000047978125636756238, # (phi, eta) 0, -0.0077774494556681395, 0.042928472977866513, 0.045193239236305857, 0.023758079311326371, 0.0053831482664981001, -0.0024684333708934296, -0.000047978125636756238, # (phi, phi) 0, -0.023289187748575177, -0.027393682622132587, -0.01237107951766888, -0.0019972509429492644, 0.00256, 0.00019701866285027787, 1.9997000187491250e-06 ), dim = c(m, 2, 2) ) gh <- loglogistic2_gradient_hessian(x, theta, -1) expect_type(gh, "list") expect_type(gh$G, "double") expect_type(gh$H, "double") expect_length(gh$G, m * 2) expect_length(gh$H, m * 2 * 2) expect_equal(gh$G, true_gradient) expect_equal(gh$H, true_hessian) }) test_that("Gradient (2)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_gradient <- matrix( c( # log_eta 0, 0.21790504919718313, 0.10619562227921940, -0.088196399416586489, -0.18987648195762578, -0.22180709777918250, -0.014904047977582184, -0.00026490262303068616, # log_phi 0, 0.23781212841854935, 0.47590719809637121, 0.48374092985756517, 0.40398939527837394, 0.32000000000000000, 0.0049750934384736413, 0.000049997500093746875 ), nrow = m, ncol = 2 ) G <- loglogistic2_gradient_2(x, theta, -1) expect_type(G, "double") expect_length(G, m * 2) expect_equal(G, true_gradient) }) test_that("Hessian (2)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_hessian <- array( c( # (log_eta, log_eta) 0, -0.071264048538484085, 0.095792119127772232, -0.082397017341249169, -0.11166383500231420, -0.037313140434593152, 0.073947655143031158, 0.0025420333627564916, # (log_eta, log_phi) 0, -0.077774494556681395, 0.42928472977866513, 0.45193239236305857, 0.23758079311326371, 0.053831482664981001, -0.024684333708934296, -0.00047978125636756238, # (log_phi, log_eta) 0, -0.077774494556681395, 0.42928472977866513, 0.45193239236305857, 0.23758079311326371, 0.053831482664981001, -0.024684333708934296, -0.00047978125636756238, # (log_phi, log_phi) 0, -0.34441756529583009, -0.20893486745694346, 0.17446394191584318, 0.35405812170464233, 0.384, 0.009900560009730588, 0.000099990000562475001 ), dim = c(m, 2, 2) ) H <- loglogistic2_hessian_2(x, theta, -1) expect_type(H, "double") expect_length(H, m * 2 * 2) expect_equal(H, true_hessian) }) test_that("Gradient and Hessian (2)", { x <- lltd$stats_1[, 1] theta <- lltd$theta_2_d[3:4] m <- length(x) true_gradient <- matrix( c( # log_eta 0, 0.21790504919718313, 0.10619562227921940, -0.088196399416586489, -0.18987648195762578, -0.22180709777918250, -0.014904047977582184, -0.00026490262303068616, # log_phi 0, 0.23781212841854935, 0.47590719809637121, 0.48374092985756517, 0.40398939527837394, 0.32000000000000000, 0.0049750934384736413, 0.000049997500093746875 ), nrow = m, ncol = 2 ) true_hessian <- array( c( # (log_eta, log_eta) 0, -0.071264048538484085, 0.095792119127772232, -0.082397017341249169, -0.11166383500231420, -0.037313140434593152, 0.073947655143031158, 0.0025420333627564916, # (log_eta, log_phi) 0, -0.077774494556681395, 0.42928472977866513, 0.45193239236305857, 0.23758079311326371, 0.053831482664981001, -0.024684333708934296, -0.00047978125636756238, # (log_phi, log_eta) 0, -0.077774494556681395, 0.42928472977866513, 0.45193239236305857, 0.23758079311326371, 0.053831482664981001, -0.024684333708934296, -0.00047978125636756238, # (log_phi, log_phi) 0, -0.34441756529583009, -0.20893486745694346, 0.17446394191584318, 0.35405812170464233, 0.384, 0.009900560009730588, 0.000099990000562475001 ), dim = c(m, 2, 2) ) gh <- loglogistic2_gradient_hessian_2(x, theta, -1) expect_type(gh, "list") expect_type(gh$G, "double") expect_type(gh$H, "double") expect_length(gh$G, m * 2) expect_length(gh$H, m * 2 * 2) expect_equal(gh$G, true_gradient) expect_equal(gh$H, true_hessian) object <- structure( list(stats = lltd$stats_1, start = c(1, -1, NA_real_, NA_real_)), class = "loglogistic2" ) gh <- gradient_hessian(object, theta) expect_type(gh, "list") expect_type(gh$G, "double") expect_type(gh$H, "double") expect_length(gh$G, m * 2) expect_length(gh$H, m * 2 * 2) expect_equal(gh$G, true_gradient) expect_equal(gh$H, true_hessian) }) test_that("Value of the RSS", { theta <- log(lltd$theta_2_d[3:4]) true_value <- 0.14607976935420221 object <- structure( list( stats = lltd$stats_1, m = nrow(lltd$stats_1), start = c(1, -1, NA_real_, NA_real_) ), class = "loglogistic2" ) rss_fn <- rss(object) expect_type(rss_fn, "closure") value <- rss_fn(theta) expect_type(value, "double") expect_length(value, 1) expect_equal(value, true_value) known_param <- c(NA, theta[2]) rss_fn <- rss_fixed(object, known_param) expect_type(rss_fn, "closure") value <- rss_fn(theta[1]) expect_type(value, "double") expect_length(value, 1) expect_equal(value, true_value) }) test_that("Gradient and Hessian of the RSS", { theta <- log(lltd$theta_2_d[3:4]) true_gradient <- c(0.071748288653048041, -0.22751406466277087) true_hessian <- matrix( c( # log_eta 0.37935222818782687, -0.44131953032097426, # log_phi -0.44131953032097426, 2.0207120814395956 ), nrow = 2, ncol = 2 ) object <- structure( list( stats = lltd$stats_1, m = nrow(lltd$stats_1), start = c(1, -1, NA_real_, NA_real_) ), class = "loglogistic2" ) rss_gh <- rss_gradient_hessian(object) expect_type(rss_gh, "closure") gh <- rss_gh(theta) expect_type(gh$G, "double") expect_type(gh$H, "double") expect_length(gh$G, 2) expect_length(gh$H, 2 * 2) expect_equal(gh$G, true_gradient) expect_equal(gh$H, true_hessian) known_param <- c(NA, theta[2]) rss_gh <- rss_gradient_hessian_fixed(object, known_param) expect_type(rss_gh, "closure") gh <- rss_gh(theta[1]) expect_type(gh$G, "double") expect_type(gh$H, "double") expect_length(gh$G, 1) expect_length(gh$H, 1) expect_equal(gh$G, true_gradient[1]) expect_equal(gh$H, true_hessian[1, 1, drop = FALSE]) }) test_that("mle_asy", { x <- lltd$D$x y <- lltd$D$y w <- rep(1, length(y)) max_iter <- 10000 theta <- c(0.54763114884776605, 1.7084450404687743) true_value <- c(0.54763114884776605, 1.7084450404687743) object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) result <- mle_asy(object, theta) expect_type(result, "double") expect_length(result, 2) expect_equal(result, true_value) }) test_that("fit", { x <- lltd$D$x y <- lltd$D$y n <- length(y) w <- rep(1, n) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = TRUE, phi = TRUE) rss_value <- 0.16419461331342958 theta <- c( alpha = 1, delta = -1, eta = exp(0.54763114884776605), phi = exp(1.7084450404687743) ) fitted_values <- rep( c( 1, 0.85265828525963440, 0.6357691163194841, 0.4640463320849631, 0.3449054253807791, 0.2635965354058204, 0.0066340855843002, 0.000124584968709 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.02515828525963440, -0.07485828525963440, 0.03194171474036560, -0.0796691163194841, 0.0690308836805159, 0.0812536679150369, 0.0219536679150369, 0.0710536679150369, -0.0241463320849631, 0.0103945746192209, -0.0317054253807791, 0.0049945746192209, -0.1214965354058204, 0.0101659144156998, 0.1319659144156998, 0.122575415031291 ) object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) result <- fit(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) object <- loglogistic2_new(x, y, w, c(1, 1), max_iter, NULL, NULL) result <- fit(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained: inequalities", { x <- lltd$D$x y <- lltd$D$y n <- length(y) w <- rep(1, n) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = TRUE, phi = TRUE) rss_value <- 0.16419461331342958 theta <- c( alpha = 1, delta = -1, eta = exp(0.54763114884776605), phi = exp(1.7084450404687743) ) fitted_values <- rep( c( 1, 0.85265828525963440, 0.6357691163194841, 0.4640463320849631, 0.3449054253807791, 0.2635965354058204, 0.0066340855843002, 0.000124584968709 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.02515828525963440, -0.07485828525963440, 0.03194171474036560, -0.0796691163194841, 0.0690308836805159, 0.0812536679150369, 0.0219536679150369, 0.0710536679150369, -0.0241463320849631, 0.0103945746192209, -0.0317054253807791, 0.0049945746192209, -0.1214965354058204, 0.0101659144156998, 0.1319659144156998, 0.122575415031291 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values within the boundaries object <- loglogistic2_new( x, y, w, c(4, 8), max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values outside the boundaries object <- loglogistic2_new( x, y, w, c(7, 1), max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained: equalities", { x <- lltd$D$x y <- lltd$D$y n <- length(y) w <- rep(1, n) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = FALSE, phi = TRUE) rss_value <- 0.16968996645062665 theta <- c( alpha = 1, delta = -1, eta = 2, phi = exp(1.7176599758908608) ) fitted_values <- rep( c( 1, 0.88584912304501616, 0.65987365414469592, 0.46301791484323224, 0.32660884016084947, 0.23688205621120481, 0.003094528439196051, 0.00003104037917471891 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05834912304501616, -0.10804912304501616, -0.00124912304501616, -0.10377365414469592, 0.04492634585530408, 0.08228208515676776, 0.02298208515676776, 0.07208208515676776, -0.02311791484323224, 0.02869115983915053, -0.01340884016084947, 0.02329115983915053, -0.09478205621120481, 0.013705471560803949, 0.135505471560803949, 0.12266895962082528109 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values with same equalities object <- loglogistic2_new( x, y, w, c(2, 1), max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values with different equalities object <- loglogistic2_new( x, y, w, c(1, 1), max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained: equalities and inequalities", { x <- lltd$D$x y <- lltd$D$y n <- length(y) w <- rep(1, n) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = FALSE, phi = TRUE) rss_value <- 0.16968996645062665 theta <- c( alpha = 1, delta = -1, eta = 2, phi = exp(1.7176599758908608) ) fitted_values <- rep( c( 1, 0.88584912304501616, 0.65987365414469592, 0.46301791484323224, 0.32660884016084947, 0.23688205621120481, 0.003094528439196051, 0.00003104037917471891 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05834912304501616, -0.10804912304501616, -0.00124912304501616, -0.10377365414469592, 0.04492634585530408, 0.08228208515676776, 0.02298208515676776, 0.07208208515676776, -0.02311791484323224, 0.02869115983915053, -0.01340884016084947, 0.02329115983915053, -0.09478205621120481, 0.013705471560803949, 0.135505471560803949, 0.12266895962082528109 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values within the boundaries object <- loglogistic2_new( x, y, w, c(2, 7), max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values outside the boundaries object <- loglogistic2_new( x, y, w, c(8, 1), max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit (weighted)", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w n <- length(y) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = TRUE, phi = TRUE) rss_value <- 0.080570305967227270 theta <- c( alpha = 1, delta = -1, eta = exp(0.66309884142824792), phi = exp(1.7153886937325806) ) fitted_values <- rep( c( 1, 0.87910304144164237, 0.6544607502962267, 0.4630126427820133, 0.3303609999355391, 0.2423884549177716, 0.003653243406751, 0.000042019666396 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05160304144164237, -0.10130304144164237, 0.00549695855835763, -0.0983607502962267, 0.0503392497037733, 0.0822873572179867, 0.0229873572179867, 0.0720873572179867, -0.0231126427820133, 0.0249390000644609, -0.0171609999355391, 0.0195390000644609, -0.1002884549177716, 0.013146756593249, 0.134946756593249, 0.122657980333604 ) object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) result <- fit(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) object <- loglogistic2_new(x, y, w, c(1, 1), max_iter, NULL, NULL) result <- fit(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): inequalities", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w n <- length(y) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = TRUE, phi = TRUE) rss_value <- 0.080570305967227270 theta <- c( alpha = 1, delta = -1, eta = exp(0.66309884142824792), phi = exp(1.7153886937325806) ) fitted_values <- rep( c( 1, 0.87910304144164237, 0.6544607502962267, 0.4630126427820133, 0.3303609999355391, 0.2423884549177716, 0.003653243406751, 0.000042019666396 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05160304144164237, -0.10130304144164237, 0.00549695855835763, -0.0983607502962267, 0.0503392497037733, 0.0822873572179867, 0.0229873572179867, 0.0720873572179867, -0.0231126427820133, 0.0249390000644609, -0.0171609999355391, 0.0195390000644609, -0.1002884549177716, 0.013146756593249, 0.134946756593249, 0.122657980333604 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values within the boundaries object <- loglogistic2_new( x, y, w, c(4, 8), max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values outside the boundaries object <- loglogistic2_new( x, y, w, c(7, 1), max_iter, c(1, 3), c(5, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 2) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): equalities", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w n <- length(y) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = FALSE, phi = TRUE) rss_value <- 0.080806739950738768 theta <- c( alpha = 1, delta = -1, eta = 2, phi = exp(1.7179698864941254) ) fitted_values <- rep( c( 1, 0.88591178465897222, 0.66001275328511998, 0.46317202595877424, 0.32674517549914561, 0.23699411891072304, 0.003096441147111687, 0.00003105962402598627 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05841178465897222, -0.10811178465897222, -0.00131178465897222, -0.10391275328511998, 0.04478724671488002, 0.08212797404122576, 0.02282797404122576, 0.07192797404122576, -0.02327202595877424, 0.02855482450085439, -0.01354517549914561, 0.02315482450085439, -0.09489411891072304, 0.013703558852888313, 0.13550355885288831, 0.12266894037597401 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values with same equalities object <- loglogistic2_new( x, y, w, c(2, 1), max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values with different equalities object <- loglogistic2_new( x, y, w, c(1, 1), max_iter, c(2, -Inf), c(2, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): equalities and inequalities", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w n <- length(y) k <- as.numeric(table(x)) max_iter <- 10000 estimated <- c(alpha = FALSE, delta = FALSE, eta = FALSE, phi = TRUE) rss_value <- 0.080806739950738768 theta <- c( alpha = 1, delta = -1, eta = 2, phi = exp(1.7179698864941254) ) fitted_values <- rep( c( 1, 0.88591178465897222, 0.66001275328511998, 0.46317202595877424, 0.32674517549914561, 0.23699411891072304, 0.003096441147111687, 0.00003105962402598627 ), k ) residuals <- c( -0.1473, -0.2429, -0.063, -0.05841178465897222, -0.10811178465897222, -0.00131178465897222, -0.10391275328511998, 0.04478724671488002, 0.08212797404122576, 0.02282797404122576, 0.07192797404122576, -0.02327202595877424, 0.02855482450085439, -0.01354517549914561, 0.02315482450085439, -0.09489411891072304, 0.013703558852888313, 0.13550355885288831, 0.12266894037597401 ) object <- loglogistic2_new( x, y, w, NULL, max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values within the boundaries object <- loglogistic2_new( x, y, w, c(2, 7), max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) # initial values outside the boundaries object <- loglogistic2_new( x, y, w, c(8, 1), max_iter, c(2, 3), c(2, 12) ) result <- fit_constrained(object) expect_true(inherits(result, "loglogistic2_fit")) expect_true(inherits(result, "loglogistic")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 1) expect_equal(result$fitted.values, fitted_values, tolerance = 1.0e-6) expect_equal(result$residuals, residuals, tolerance = 1.0e-6) expect_equal(result$weights, w) }) test_that("fisher_info", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w max_iter <- 10000 theta <- lltd$theta_2_d names(theta) <- c("alpha", "delta", "eta", "phi") sigma <- lltd$sigma true_value <- matrix(c( # eta 33.710156780065974, -14.980681134843766, -303.36552779699696, # phi -14.980681134843766, 30.964961924076123, 628.42233185708605, # sigma -303.36552779699696, 628.42233185708605, 42740.806385880433 ), nrow = 3, ncol = 3 ) rownames(true_value) <- colnames(true_value) <- c("eta", "phi", "sigma") object <- loglogistic2_new(x, y, w, NULL, max_iter, NULL, NULL) fim <- fisher_info(object, theta, sigma) expect_type(fim, "double") expect_length(fim, 3 * 3) expect_equal(fim, true_value) }) test_that("drda: 'lower_bound' argument errors", { x <- lltd$D$x y <- lltd$D$y expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = c("c", "d") ), "'lower_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = matrix(-Inf, nrow = 2, ncol = 2), upper_bound = rep(Inf, 2) ), "'lower_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = rep(-Inf, 3), upper_bound = rep(Inf, 2) ), "'lower_bound' and 'upper_bound' must have the same length" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = c( 0, -Inf), upper_bound = c(-1, Inf) ), "'lower_bound' cannot be larger than 'upper_bound'" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = c(Inf, -Inf), upper_bound = c(Inf, Inf) ), "'lower_bound' cannot be equal to infinity" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = rep(-Inf, 3), upper_bound = rep(Inf, 3) ), "'lower_bound' must be of length 2" ) }) test_that("drda: 'upper_bound' argument errors", { x <- lltd$D$x y <- lltd$D$y expect_error( drda( y ~ x, mean_function = "loglogistic2", upper_bound = c("c", "d") ), "'upper_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = rep(-Inf, 2), upper_bound = matrix(Inf, nrow = 2, ncol = 2) ), "'upper_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = c(-Inf, -Inf), upper_bound = c(-Inf, Inf) ), "'upper_bound' cannot be equal to -infinity" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", lower_bound = rep(-Inf, 3), upper_bound = rep(Inf, 3) ), "'lower_bound' must be of length 2" ) }) test_that("drda: 'start' argument errors", { x <- lltd$D$x y <- lltd$D$y expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c("c", "d") ), "'start' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(1, Inf) ), "'start' must be finite" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(-Inf, 1) ), "'start' must be finite" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = rep(1, 3) ), "'start' must be of length 2" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(-1, 1) ), "parameter 'eta' cannot be negative nor zero" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(0, 1) ), "parameter 'eta' cannot be negative nor zero" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(1, -1) ), "parameter 'phi' cannot be negative nor zero" ) expect_error( drda( y ~ x, mean_function = "loglogistic2", start = c(1, 0) ), "parameter 'phi' cannot be negative nor zero" ) }) test_that("nauc: decreasing", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w result <- drda(y ~ x, weights = w, mean_function = "loglogistic2") expect_equal(nauc(result), 0.0089638310449171108) expect_equal(nauc(result, xlim = c(0, 2)), 0.95676585686209365) expect_equal(nauc(result, ylim = c(0.3, 0.7)), 0.0057288924161456609) expect_equal(nauc(result, xlim = c(0, 2), ylim = c(0.3, 0.7)), 1.0) expect_equal( nauc(result, xlim = c(5, 8), ylim = c(0.3, 0.7)), 0.32521005090585268 ) expect_equal(nauc(result, xlim = c(10, 15), ylim = c(0.3, 0.7)), 0.0) }) test_that("naac: decreasing", { x <- lltd$D$x y <- lltd$D$y w <- lltd$D$w result <- drda(y ~ x, weights = w, mean_function = "loglogistic2") expect_equal(naac(result), 1 - 0.0089638310449171108) expect_equal(naac(result, xlim = c(0, 2)), 1 - 0.95676585686209365) expect_equal(naac(result, ylim = c(0.3, 0.7)), 1 - 0.0057288924161456609) expect_equal(naac(result, xlim = c(0, 2), ylim = c(0.3, 0.7)), 0.0) expect_equal( naac(result, xlim = c(5, 8), ylim = c(0.3, 0.7)), 1 - 0.32521005090585268 ) expect_equal(naac(result, xlim = c(10, 15), ylim = c(0.3, 0.7)), 1.0) }) test_that("nauc: increasing", { x <- lltd$D$x y <- rev(lltd$D$y) w <- lltd$D$w result <- drda(y ~ x, weights = w, mean_function = "loglogistic2") expect_equal(nauc(result), 0.99027624631427548) expect_equal(nauc(result, xlim = c(0, 2)), 0.099216635018969768) expect_equal(nauc(result, ylim = c(0.3, 0.7)), 0.99536629407136298) expect_equal(nauc(result, xlim = c(0, 2), ylim = c(0.3, 0.7)), 0.0) expect_equal( nauc(result, xlim = c(5, 8), ylim = c(0.3, 0.7)), 0.84693307096743735 ) expect_equal(nauc(result, xlim = c(9, 12), ylim = c(0.3, 0.7)), 1.0) }) test_that("naac: increasing", { x <- lltd$D$x y <- rev(lltd$D$y) w <- lltd$D$w result <- drda(y ~ x, weights = w, mean_function = "loglogistic2") expect_equal(naac(result), 1 - 0.99027624631427548) expect_equal(naac(result, xlim = c(0, 2)), 1 - 0.099216635018969768) expect_equal(naac(result, ylim = c(0.3, 0.7)), 1 - 0.99536629407136298) expect_equal(naac(result, xlim = c(0, 2), ylim = c(0.3, 0.7)), 1.0) expect_equal( naac(result, xlim = c(5, 8), ylim = c(0.3, 0.7)), 1 - 0.84693307096743735 ) expect_equal(naac(result, xlim = c(9, 12), ylim = c(0.3, 0.7)), 0.0) })