# Combine all parameters testthat::test_that( "No estimator fails", { testthat::skip_on_cran() # Simulate communities systematically rcommunity.list <- lapply( # All distributions eval(formals(divent:::rcommunity)$distribution), function(distribution) { # print(distribution) rcommunity( 1, size = 1000, species_number = 300, distribution = distribution, check_arguments = TRUE ) } ) # Coerce to a dataframe rcommunity.dataframe <- dplyr::bind_rows(rcommunity.list) # Replace NA's due to binding by zeros rcommunity.dataframe <- dplyr::mutate( rcommunity.dataframe, dplyr::across( .cols = dplyr::everything(), .fns = ~ ifelse(is.na(.x), 0, .x)) ) # The number of species must be less than 300 testthat::expect_gte( 300, ncol(abd_species(rcommunity.dataframe)), ) } ) # Unveil probabilities abd <- abd_species(paracou_6_abd[1, ]) testthat::test_that( "No estimator fails", { testthat::skip_on_cran() # Simulate communities systematically rcommunity.list <- lapply( # All distributions eval(formals(divent:::rcommunity)$bootstrap), function(bootstrap) { # print(bootstrap) rcommunity( 1, abd = abd, bootstrap = bootstrap, check_arguments = TRUE ) } ) # Coerce to a dataframe rcommunity.dataframe <- dplyr::bind_rows(rcommunity.list) # Replace NA's due to binding by zeros rcommunity.dataframe <- dplyr::mutate( rcommunity.dataframe, dplyr::across( .cols = dplyr::everything(), .fns = ~ ifelse(is.na(.x), 0, .x)) ) # The number of individuals must equal the sample size testthat::expect_gte( unique(rcommunity.dataframe$weight), sum(abd) ) } )