test_that("print.ZINegativeBinomial works", { expect_output(print(ZINegativeBinomial(1, 1, 0.3)), regexp = "ZINegativeBinomial") }) test_that("random.ZINegativeBinomial work correctly", { p <- ZINegativeBinomial(mu = 1, theta = 1, pi = 0.3) expect_length(random(p), 1) expect_length(random(p, 100), 100) expect_length(random(p[-1], 1), 0) expect_length(random(p, 0), 0) expect_error(random(p, -2)) # consistent with base R, using the `length` as number of samples to draw expect_length(random(p, c(1, 2, 3)), 3) expect_length(random(p, cbind(1, 2, 3)), 3) expect_length(random(p, rbind(1, 2, 3)), 3) }) test_that("pdf.ZINegativeBinomial work correctly", { p <- ZINegativeBinomial(mu = 1, theta = 1, pi = 0.3) expect_equal(pdf(p, 0), dzinbinom(0, mu = 1, theta = 1, pi = 0.3)) expect_equal(pdf(p, 1), dzinbinom(1, mu = 1, theta = 1, pi = 0.3)) expect_equal(pdf(p, -12), 0) expect_warning(pdf(p, 0.5)) expect_length(pdf(p, seq_len(0)), 0) expect_length(pdf(p, seq_len(1)), 1) expect_length(pdf(p, seq_len(10)), 10) }) test_that("log_pdf.ZINegativeBinomial work correctly", { p <- ZINegativeBinomial(mu = 1, theta = 1, pi = 0.3) expect_equal(log_pdf(p, 0), dzinbinom(0, mu = 1, theta = 1, pi = 0.3, log = TRUE)) expect_equal(log_pdf(p, 1), dzinbinom(1, mu = 1, theta = 1, pi = 0.3, log = TRUE)) expect_equal(log_pdf(p, -12), -Inf) expect_warning(log_pdf(p, 0.5)) expect_length(log_pdf(p, seq_len(0)), 0) expect_length(log_pdf(p, seq_len(1)), 1) expect_length(log_pdf(p, seq_len(10)), 10) }) test_that("cdf.ZINegativeBinomial work correctly", { p <- ZINegativeBinomial(mu = 1, theta = 1, pi = 0.3) expect_equal(cdf(p, 0), pzinbinom(0, mu = 1, theta = 1, pi = 0.3)) expect_equal(cdf(p, 1), pzinbinom(1, mu = 1, theta = 1, pi = 0.3)) expect_length(cdf(p, seq_len(0)), 0) expect_length(cdf(p, seq_len(1)), 1) expect_length(cdf(p, seq_len(10)), 10) }) test_that("quantile.ZINegativeBinomial work correctly", { p <- ZINegativeBinomial(mu = 1, theta = 1, pi = 0.3) expect_equal(quantile(p, 0), 0) expect_equal(quantile(p, 0.5), 0) expect_length(quantile(p, seq_len(0)), 0) expect_length(quantile(p, c(0, 1)), 2) }) test_that("vectorization of a ZINegativeBinomial distribution work correctly", { d <- ZINegativeBinomial(mu = c(1, 2), theta = 1, pi = 0.3) d1 <- d[1] d2 <- d[2] ## moments expect_equal(mean(d), c(mean(d1), mean(d2))) expect_equal(variance(d), c(variance(d1), variance(d2))) expect_error(skewness(d)) ## not yet implemented expect_error(kurtosis(d)) ## not yet implemented ## pdf, log_pdf, cdf expect_equal(pdf(d, 0), c(pdf(d1, 0), pdf(d2, 0))) expect_equal(log_pdf(d, 0), c(log_pdf(d1, 0), log_pdf(d2, 0))) expect_equal(cdf(d, 0.5), c(cdf(d1, 0.5), cdf(d2, 0.5))) ## quantile expect_equal(quantile(d, 0.5), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal(quantile(d, c(0.5, 0.5)), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal( quantile(d, c(0.1, 0.5, 0.9)), matrix( rbind(quantile(d1, c(0.1, 0.5, 0.9)), quantile(d2, c(0.1, 0.5, 0.9))), ncol = 3, dimnames = list(NULL, c("q_0.1", "q_0.5", "q_0.9")) ) ) ## elementwise expect_equal( pdf(d, c(0, 1), elementwise = TRUE), diag(pdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( cdf(d, c(0, 1), elementwise = TRUE), diag(cdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( quantile(d, c(0.25, 0.75), elementwise = TRUE), diag(quantile(d, c(0.25, 0.75), elementwise = FALSE)) ) ## support expect_equal( support(d), matrix( c(support(d1)[1], support(d2)[1], support(d1)[2], support(d2)[2]), ncol = 2, dimnames = list(names(d), c("min", "max")) ) ) expect_true(all(is_discrete(d))) expect_true(!any(is_continuous(d))) expect_true(is.numeric(support(d1))) expect_true(is.numeric(support(d1, drop = FALSE))) expect_null(dim(support(d1))) expect_equal(dim(support(d1, drop = FALSE)), c(1L, 2L)) }) test_that("named return values for ZINegativeBinomial distribution work correctly", { d <- ZINegativeBinomial(mu = c(5, 10), theta = 1, pi = 0.3) names(d) <- LETTERS[1:length(d)] expect_equal(names(mean(d)), LETTERS[1:length(d)]) expect_equal(names(variance(d)), LETTERS[1:length(d)]) expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) })