test_that("print.RevWeibull works", { expect_output(print(RevWeibull()), regexp = "RevWeibull") }) ## Example distributions # GEV parameter values mu <- 0 sigma <- 1 xi3 <- -0.1 # Equivalent reversed Weibull parameter values alpha <- -1 / xi3 s <- alpha * sigma m <- mu + s g3 <- RevWeibull(m, s, alpha) up <- m ## Example input vectors # For testing pdf, log_pdf and cdf xvec <- c(-Inf, 0, Inf, NA) x3 <- c(up, xvec) # For testing quantile pvec <- c(0, 0.25, 0.5, 0.75, 1, NA) test_that("random.RevWeibull works correctly", { expect_length(random(g3), 1) expect_length(random(g3, 100), 100) expect_length(random(g3[-1], 1), 0) expect_length(random(g3, 0), 0) expect_error(random(g3, -2)) # consistent with base R, using the `length` as number of samples to draw expect_length(random(g3, c(1, 2, 3)), 3) expect_length(random(g3, cbind(1, 2, 3)), 3) expect_length(random(g3, rbind(1, 2, 3)), 3) }) test_that("pdf.RevWeibull works correctly", { p <- pvec[2:4] expect_equal(unname(pdf(g3, x3)), c(0, 0, exp(-1), 0, NA)) expect_equal(unname(pdf(g3, quantile(g3, p))), (-log(p))^(1 + xi3) * p) expect_length(pdf(g3, seq_len(0)), 0) expect_length(pdf(g3, seq_len(1)), 1) expect_length(pdf(g3, seq_len(10)), 10) }) test_that("log_pdf.RevWeibull works correctly", { expect_equal(unname(log_pdf(g3, x3)), c(-Inf, -Inf, -1, -Inf, NA)) expect_length(log_pdf(g3, seq_len(0)), 0) expect_length(log_pdf(g3, seq_len(1)), 1) expect_length(log_pdf(g3, seq_len(10)), 10) }) test_that("cdf.RevWeibull works correctly", { expect_equal(unname(cdf(g3, x3)), c(1, 0, exp(-1), 1, NA)) expect_length(cdf(g3, seq_len(0)), 0) expect_length(cdf(g3, seq_len(1)), 1) expect_length(cdf(g3, seq_len(10)), 10) }) test_that("quantile.RevWeibull works correctly", { q3 <- ((-log(pvec[2:4]))^(-xi3) - 1) / xi3 expect_equal(unname(quantile(g3, pvec)), c(-Inf, q3, up, NA)) expect_length(quantile(g3, seq_len(0)), 0) expect_length(quantile(g3, c(0, 1)), 2) expect_length(quantile(g3, seq_len(10) / 10), 10) }) test_that("cdf.RevWeibull and quantile.RevWeibull are consistent", { expect_equal(unname(cdf(g3, quantile(g3, pvec))), pvec) }) test_that("vectorization of a RevWeibull distribution work correctly", { d <- RevWeibull(c(0, 1), c(1, 2)) d1 <- d[1] d2 <- d[2] ## moments expect_equal(mean(d), c(mean(d1), mean(d2))) expect_equal(variance(d), c(variance(d1), variance(d2))) ## random set.seed(123) r1 <- random(d) set.seed(123) r2 <- c(random(d1), random(d2)) expect_equal(r1, r2) ## pdf, log_pdf, cdf expect_equal(pdf(d, 0), c(pdf(d1, 0), pdf(d2, 0))) expect_equal(log_pdf(d, 0), c(log_pdf(d1, 0), log_pdf(d2, 0))) expect_equal(cdf(d, 0.5), c(cdf(d1, 0.5), cdf(d2, 0.5))) ## quantile expect_equal(quantile(d, 0.5), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal(quantile(d, c(0.5, 0.5)), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal( quantile(d, c(0.1, 0.5, 0.9)), matrix( rbind(quantile(d1, c(0.1, 0.5, 0.9)), quantile(d2, c(0.1, 0.5, 0.9))), ncol = 3, dimnames = list(NULL, c("q_0.1", "q_0.5", "q_0.9")) ) ) ## elementwise expect_equal( pdf(d, c(0.25, 0.75), elementwise = TRUE), diag(pdf(d, c(0.25, 0.75), elementwise = FALSE)) ) expect_equal( cdf(d, c(0.25, 0.75), elementwise = TRUE), diag(cdf(d, c(0.25, 0.75), elementwise = FALSE)) ) expect_equal( quantile(d, c(0.25, 0.75), elementwise = TRUE), diag(quantile(d, c(0.25, 0.75), elementwise = FALSE)) ) ## support expect_equal( support(d), matrix( c(support(d1)[1], support(d2)[1], support(d1)[2], support(d2)[2]), ncol = 2, dimnames = list(names(d), c("min", "max")) ) ) expect_true(!any(is_discrete(d))) expect_true(all(is_continuous(d))) expect_true(is.numeric(support(d1))) expect_true(is.numeric(support(d1, drop = FALSE))) expect_null(dim(support(d1))) expect_equal(dim(support(d1, drop = FALSE)), c(1L, 2L)) }) test_that("named return values for RevWeibull distribution work correctly", { d <- RevWeibull(c(0, 1), c(1, 2)) names(d) <- LETTERS[1:length(d)] expect_equal(names(mean(d)), LETTERS[1:length(d)]) expect_equal(names(variance(d)), LETTERS[1:length(d)]) expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) })