test_that("print.NegativeBinomial works", { expect_output(print(NegativeBinomial(1, 1)), regexp = "NegativeBinomial") }) test_that("likelihood.NegativeBinomial and log_likelihood.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) x <- c(1, 5, 0) expect_equal(likelihood(X, 1), dnbinom(1, 5, 0.1)) expect_equal(likelihood(X, x), dnbinom(1, 5, 0.1) * dnbinom(5, 5, 0.1) * dnbinom(0, 5, 0.1)) expect_equal(log_likelihood(X, 1), log(dnbinom(1, 5, 0.1))) expect_equal(log_likelihood(X, x), log(dnbinom(1, 5, 0.1) * dnbinom(5, 5, 0.1) * dnbinom(0, 5, 0.1))) ## alternative parameterization Y <- NegativeBinomial(mu = 45, size = 5) expect_equal(likelihood(X, 1), likelihood(Y, 1)) expect_equal(likelihood(X, x), likelihood(Y, x)) expect_equal(log_likelihood(X, 1), log_likelihood(Y, 1)) expect_equal(log_likelihood(X, x), log_likelihood(Y, x)) }) test_that("random.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) expect_length(random(X), 1) expect_length(random(X, 100), 100) expect_length(random(X[-1], 1), 0) expect_length(random(X, 0), 0) expect_error(random(X, -2)) # consistent with base R, using the `length` as number of samples to draw expect_length(random(X, c(1, 2, 3)), 3) expect_length(random(X, cbind(1, 2, 3)), 3) expect_length(random(X, rbind(1, 2, 3)), 3) Y <- NegativeBinomial(mu = 45, size = 5) expect_equal({set.seed(0); random(X)}, {set.seed(0); random(Y)}) expect_equal({set.seed(0); random(X, 100)}, {set.seed(0); random(Y, 100)}) expect_equal({set.seed(0); random(X, 0)}, {set.seed(0); random(Y, 0)}) expect_error(random(Y, -2)) }) test_that("pdf.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) expect_equal(pdf(X, 0), dnbinom(0, 5, 0.1)) expect_equal(pdf(X, 1), dnbinom(1, 5, 0.1)) expect_length(pdf(X, seq_len(0)), 0) expect_length(pdf(X, seq_len(1)), 1) expect_length(pdf(X, seq_len(10)), 10) Y <- NegativeBinomial(mu = 45, size = 5) expect_equal(pdf(X, 0), pdf(Y, 0)) expect_equal(pdf(X, 1), pdf(Y, 1)) expect_equal(pdf(X, seq_len(0)), pdf(Y, seq_len(0))) expect_equal(pdf(X, seq_len(1)), pdf(Y, seq_len(1))) expect_equal(pdf(X, seq_len(10)), pdf(Y, seq_len(10))) }) test_that("log_pdf.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) expect_equal(log_pdf(X, 0), log(dnbinom(0, 5, 0.1))) expect_equal(log_pdf(X, 1), log(dnbinom(1, 5, 0.1))) expect_length(log_pdf(X, seq_len(0)), 0) expect_length(log_pdf(X, seq_len(1)), 1) expect_length(log_pdf(X, seq_len(10)), 10) Y <- NegativeBinomial(mu = 45, size = 5) expect_equal(log_pdf(X, 0), log_pdf(Y, 0)) expect_equal(log_pdf(X, 1), log_pdf(Y, 1)) expect_equal(log_pdf(X, seq_len(0)), log_pdf(Y, seq_len(0))) expect_equal(log_pdf(X, seq_len(1)), log_pdf(Y, seq_len(1))) expect_equal(log_pdf(X, seq_len(10)), log_pdf(Y, seq_len(10))) }) test_that("cdf.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) expect_equal(cdf(X, 0), pnbinom(0, 5, 0.1)) expect_equal(cdf(X, 1), pnbinom(1, 5, 0.1)) expect_length(cdf(X, seq_len(0)), 0) expect_length(cdf(X, seq_len(1)), 1) expect_length(cdf(X, seq_len(10)), 10) Y <- NegativeBinomial(mu = 45, size = 5) expect_equal(cdf(X, 0), cdf(Y, 0)) expect_equal(cdf(X, 1), cdf(Y, 1)) expect_equal(cdf(X, seq_len(0)), cdf(Y, seq_len(0))) expect_equal(cdf(X, seq_len(1)), cdf(Y, seq_len(1))) expect_equal(cdf(X, seq_len(10)), cdf(Y, seq_len(10))) }) test_that("quantile.NegativeBinomial work correctly", { X <- NegativeBinomial(size = 5, p = 0.1) expect_equal(quantile(X, 0), qnbinom(0, 5, 0.1)) expect_equal(quantile(X, 1), qnbinom(1, 5, 0.1)) expect_length(quantile(X, seq_len(0)), 0) expect_length(quantile(X, c(0, 1)), 2) Y <- NegativeBinomial(mu = 45, size = 5) expect_equal(quantile(X, 0), quantile(Y, 0)) expect_equal(quantile(X, 1), quantile(Y, 1)) expect_equal(quantile(X, seq_len(0)), quantile(Y, seq_len(0))) expect_equal(quantile(X, c(0, 1)), quantile(Y, c(0, 1))) }) test_that("vectorization of a NegativeBinomial distribution work correctly", { d <- NegativeBinomial(size = c(5, 3), p = c(0.1, 0.2)) d1 <- d[1] d2 <- d[2] ## moments expect_equal(mean(d), c(mean(d1), mean(d2))) expect_equal(variance(d), c(variance(d1), variance(d2))) expect_equal(skewness(d), c(skewness(d1), skewness(d2))) expect_equal(kurtosis(d), c(kurtosis(d1), kurtosis(d2))) ## random set.seed(123) r1 <- random(d) set.seed(123) r2 <- c(random(d1), random(d2)) expect_equal(r1, r2) ## pdf, log_pdf, cdf expect_equal(pdf(d, 0), c(pdf(d1, 0), pdf(d2, 0))) expect_equal(log_pdf(d, 0), c(log_pdf(d1, 0), log_pdf(d2, 0))) expect_equal(cdf(d, 0.5), c(cdf(d1, 0.5), cdf(d2, 0.5))) ## quantile expect_equal(quantile(d, 0.5), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal(quantile(d, c(0.5, 0.5)), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal( quantile(d, c(0.1, 0.5, 0.9)), matrix( rbind(quantile(d1, c(0.1, 0.5, 0.9)), quantile(d2, c(0.1, 0.5, 0.9))), ncol = 3, dimnames = list(NULL, c("q_0.1", "q_0.5", "q_0.9")) ) ) ## elementwise expect_equal( pdf(d, c(0, 1), elementwise = TRUE), diag(pdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( cdf(d, c(0, 1), elementwise = TRUE), diag(cdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( quantile(d, c(0.25, 0.75), elementwise = TRUE), diag(quantile(d, c(0.25, 0.75), elementwise = FALSE)) ) ## support expect_equal( support(d), matrix( c(support(d1)[1], support(d2)[1], support(d1)[2], support(d2)[2]), ncol = 2, dimnames = list(names(d), c("min", "max")) ) ) expect_true(all(is_discrete(d))) expect_true(!any(is_continuous(d))) expect_true(is.numeric(support(d1))) expect_true(is.numeric(support(d1, drop = FALSE))) expect_null(dim(support(d1))) expect_equal(dim(support(d1, drop = FALSE)), c(1L, 2L)) a <- NegativeBinomial(mu = c(45, 12), size = c(5, 3)) expect_equal(mean(d), mean(a)) expect_equal(variance(d), variance(a)) expect_equal(skewness(d), skewness(a)) expect_equal(kurtosis(d), kurtosis(a)) expect_equal({set.seed(0); random(d)}, {set.seed(0); random(a)}) expect_equal(pdf(d, 0), pdf(a, 0)) expect_equal(log_pdf(d, 0), log_pdf(a, 0)) expect_equal(cdf(d, 0.5), cdf(a, 0.5)) expect_equal(quantile(d, 0.5), quantile(a, 0.5)) expect_equal(quantile(d, c(0.5, 0.5)), quantile(a, 0.5)) expect_equal(quantile(d, c(0.1, 0.5, 0.9)), quantile(a, c(0.1, 0.5, 0.9))) expect_equal(support(d), support(a)) }) test_that("named return values for NegativeBinomial distribution work correctly", { d <- NegativeBinomial(size = 1, p = c(0.3, 0.7)) names(d) <- LETTERS[1:length(d)] expect_equal(names(mean(d)), LETTERS[1:length(d)]) expect_equal(names(variance(d)), LETTERS[1:length(d)]) expect_equal(names(skewness(d)), LETTERS[1:length(d)]) expect_equal(names(kurtosis(d)), LETTERS[1:length(d)]) expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) d <- NegativeBinomial(mu = c(1, 5), size = c(3, 10)) names(d) <- LETTERS[1:length(d)] expect_equal(names(mean(d)), LETTERS[1:length(d)]) expect_equal(names(variance(d)), LETTERS[1:length(d)]) expect_equal(names(skewness(d)), LETTERS[1:length(d)]) expect_equal(names(kurtosis(d)), LETTERS[1:length(d)]) expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 5)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(5, 7))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(5, 7, 9))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) })