test_that("HyperGeometric works as intended when k > n + m", { expect_error(HyperGeometric(1, 1, 3)) }) test_that("print.HyperGeometric works", { expect_output(print(HyperGeometric(1, 1, 1)), regexp = "HyperGeometric") }) test_that("likelihood.HyperGeometric and log_likelihood.HyperGeometric work correctly", { h <- HyperGeometric(1, 1, 1) x <- c(1, 1, 0) expect_equal(likelihood(h, 1), 0.5) expect_equal(likelihood(h, x), 0.5^3) expect_equal(log_likelihood(h, 1), log(0.5)) expect_equal(log_likelihood(h, x), log(0.5) * 3) }) test_that("random.HyperGeometric work correctly", { h <- HyperGeometric(1, 1, 1) expect_length(random(h), 1) expect_length(random(h, 100), 100) expect_length(random(h[-1], 1), 0) expect_length(random(h, 0), 0) expect_error(random(h, -2)) # consistent with base R, using the `length` as number of samples to draw expect_length(random(h, c(1, 2, 3)), 3) expect_length(random(h, cbind(1, 2, 3)), 3) expect_length(random(h, rbind(1, 2, 3)), 3) }) test_that("pdf.HyperGeometric work correctly", { h <- HyperGeometric(1, 1, 1) expect_equal(pdf(h, 0), 0.5) expect_equal(pdf(h, 1), 0.5) expect_equal(pdf(h, -12), 0) expect_warning(pdf(h, 0.5)) expect_length(pdf(h, seq_len(0)), 0) expect_length(pdf(h, seq_len(1)), 1) expect_length(pdf(h, seq_len(10)), 10) }) test_that("cdf.HyperGeometric work correctly", { h <- HyperGeometric(1, 1, 1) expect_equal(cdf(h, 0), 0.5) expect_equal(cdf(h, 1), 1) expect_length(cdf(h, seq_len(0)), 0) expect_length(cdf(h, seq_len(1)), 1) expect_length(cdf(h, seq_len(10)), 10) }) test_that("quantile.HyperGeometric work correctly", { h <- HyperGeometric(1, 1, 1) expect_equal(quantile(h, 0), 0) expect_equal(quantile(h, 1), 1) expect_length(quantile(h, seq_len(0)), 0) expect_length(quantile(h, c(0, 1)), 2) }) test_that("vectorization of a HyperGeometric distribution work correctly", { d <- HyperGeometric(1, c(1, 3), 1) d1 <- d[1] d2 <- d[2] ## moments expect_equal(mean(d), c(mean(d1), mean(d2))) expect_equal(variance(d), c(variance(d1), variance(d2))) expect_equal(skewness(d), c(skewness(d1), skewness(d2))) expect_equal(kurtosis(d), c(kurtosis(d1), kurtosis(d2))) ## random set.seed(123) r1 <- random(d) set.seed(123) r2 <- c(random(d1), random(d2)) expect_equal(r1, r2) ## pdf, log_pdf, cdf expect_equal(pdf(d, 0), c(pdf(d1, 0), pdf(d2, 0))) expect_equal(log_pdf(d, 0), c(log_pdf(d1, 0), log_pdf(d2, 0))) expect_equal(cdf(d, 0.5), c(cdf(d1, 0.5), cdf(d2, 0.5))) ## quantile expect_equal(quantile(d, 0.5), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal(quantile(d, c(0.5, 0.5)), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal( quantile(d, c(0.1, 0.5, 0.9)), matrix( rbind(quantile(d1, c(0.1, 0.5, 0.9)), quantile(d2, c(0.1, 0.5, 0.9))), ncol = 3, dimnames = list(NULL, c("q_0.1", "q_0.5", "q_0.9")) ) ) ## elementwise expect_equal( pdf(d, c(0, 1), elementwise = TRUE), diag(pdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( cdf(d, c(0, 1), elementwise = TRUE), diag(cdf(d, c(0, 1), elementwise = FALSE)) ) expect_equal( quantile(d, c(0.25, 0.75), elementwise = TRUE), diag(quantile(d, c(0.25, 0.75), elementwise = FALSE)) ) ## support expect_equal( support(d), matrix( c(support(d1)[1], support(d2)[1], support(d1)[2], support(d2)[2]), ncol = 2, dimnames = list(names(d), c("min", "max")) ) ) expect_true(all(is_discrete(d))) expect_true(!any(is_continuous(d))) expect_true(is.numeric(support(d1))) expect_true(is.numeric(support(d1, drop = FALSE))) expect_null(dim(support(d1))) expect_equal(dim(support(d1, drop = FALSE)), c(1L, 2L)) }) test_that("named return values for HyperGeometric distribution work correctly", { d <- HyperGeometric(6, c(5, 7), 5) names(d) <- LETTERS[1:length(d)] expect_equal(names(mean(d)), LETTERS[1:length(d)]) expect_equal(names(variance(d)), LETTERS[1:length(d)]) expect_equal(names(skewness(d)), LETTERS[1:length(d)]) expect_equal(names(kurtosis(d)), LETTERS[1:length(d)]) expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 2)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(2, 4))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(2, 4, 5))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 2)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(2, 4))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(2, 4, 5))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 2)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(2, 4))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(2, 4, 5))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) })