# Compare: https://en.wikipedia.org/wiki/Erlang_distribution # # The Erlang distribution is a special case of the gamma distribution wherein # the shape (k) of the distribution is discretised. e <- Erlang(k = 3, lambda = 0.5) test_that("Erlang constructor works", { expect_error(Erlang(k = 3.1, lambda = 0.5)) }) test_that("print.Erlang works", { expect_output(print(e), regexp = "Erlang") }) test_that("random.Erlang works correctly", { set.seed(123) r1 <- random(e, 3) set.seed(123) r2 <- rgamma(3, shape = 3, rate = 0.5) expect_equal(unname(r1), r2) expect_length(random(e), 1) expect_length(random(e, 100), 100) expect_length(random(e[-1], 1), 0) expect_length(random(e, 0), 0) expect_error(random(e, -2)) # consistent with base R, using the `length` as number of samples to draw expect_length(random(e, c(1, 2, 3)), 3) expect_length(random(e, cbind(1, 2, 3)), 3) expect_length(random(e, rbind(1, 2, 3)), 3) }) test_that("pdf.Erlang works correctly", { expect_equal(pdf(e, 0), dgamma(0, shape = 3, rate = 0.5)) expect_equal(pdf(e, 1), dgamma(1, shape = 3, rate = 0.5)) expect_length(pdf(e, seq_len(0)), 0) expect_length(pdf(e, seq_len(1)), 1) expect_length(pdf(e, seq_len(10)), 10) }) test_that("log_pdf.Erlang works correctly", { expect_equal(log_pdf(e, 0), log(dgamma(0, shape = 3, rate = 0.5))) expect_equal(log_pdf(e, 1), log(dgamma(1, shape = 3, rate = 0.5))) expect_length(log_pdf(e, seq_len(0)), 0) expect_length(log_pdf(e, seq_len(1)), 1) expect_length(log_pdf(e, seq_len(10)), 10) }) test_that("cdf.Erlang works correctly", { expect_equal(cdf(e, 0.3), pgamma(0.3, shape = 3, rate = 0.5)) expect_equal(cdf(e, 1), pgamma(1, shape = 3, rate = 0.5)) expect_equal(cdf(e, 0), 0) expect_length(cdf(e, seq_len(0)), 0) expect_length(cdf(e, seq_len(1)), 1) expect_length(cdf(e, seq_len(10)), 10) }) test_that("quantile.Erlang works correctly", { expect_equal(quantile(e, 0.3), qgamma(0.3, shape = 3, rate = 0.5)) expect_equal(quantile(e, 1), qgamma(1, shape = 3, rate = 0.5)) expect_equal(quantile(e, 0), 0) expect_length(quantile(e, seq_len(1)), 1) expect_length(quantile(e, seq(0.1, 0.9, by = 0.1)), 9) }) test_that("support.Erlang works correctly", { expect_equal(unname(support(e)), c(0, Inf)) }) test_that("vectorization of a Erlang distribution work correctly", { d <- Erlang(3, c(0.5, 0.8)) d1 <- d[1] d2 <- d[2] ## random set.seed(123) r1 <- random(d) set.seed(123) r2 <- c(random(d1), random(d2)) expect_equal(r1, r2) ## pdf, log_pdf, cdf expect_equal(pdf(d, 0), c(pdf(d1, 0), pdf(d2, 0))) expect_equal(log_pdf(d, 0), c(log_pdf(d1, 0), log_pdf(d2, 0))) expect_equal(cdf(d, 0.5), c(cdf(d1, 0.5), cdf(d2, 0.5))) ## quantile expect_equal(quantile(d, 0.5), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal(quantile(d, c(0.5, 0.5)), c(quantile(d1, 0.5), quantile(d2, 0.5))) expect_equal( quantile(d, c(0.1, 0.5, 0.9)), matrix( rbind(quantile(d1, c(0.1, 0.5, 0.9)), quantile(d2, c(0.1, 0.5, 0.9))), ncol = 3, dimnames = list(NULL, c("q_0.1", "q_0.5", "q_0.9")) ) ) ## elementwise expect_equal( pdf(d, c(0.25, 0.75), elementwise = TRUE), diag(pdf(d, c(0.25, 0.75), elementwise = FALSE)) ) expect_equal( cdf(d, c(0.25, 0.75), elementwise = TRUE), diag(cdf(d, c(0.25, 0.75), elementwise = FALSE)) ) expect_equal( quantile(d, c(0.25, 0.75), elementwise = TRUE), diag(quantile(d, c(0.25, 0.75), elementwise = FALSE)) ) ## support expect_equal( support(d), matrix( c(support(d1)[1], support(d2)[1], support(d1)[2], support(d2)[2]), ncol = 2, dimnames = list(names(d), c("min", "max")) ) ) expect_true(!any(is_discrete(d))) expect_true(all(is_continuous(d))) expect_true(is.numeric(support(d1))) expect_true(is.numeric(support(d1, drop = FALSE))) expect_null(dim(support(d1))) expect_equal(dim(support(d1, drop = FALSE)), c(1L, 2L)) }) test_that("named return values for Erlang distribution work correctly", { d <- Erlang(3, c(0.5, 0.8)) names(d) <- LETTERS[1:length(d)] expect_equal(names(random(d, 1)), LETTERS[1:length(d)]) expect_equal(rownames(random(d, 3)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(pdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(pdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(log_pdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(log_pdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(cdf(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(cdf(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(cdf(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(quantile(d, 0.5)), LETTERS[1:length(d)]) expect_equal(names(quantile(d, c(0.5, 0.7))), LETTERS[1:length(d)]) expect_equal(rownames(quantile(d, c(0.5, 0.7, 0.9))), LETTERS[1:length(d)]) expect_equal(names(support(d[1])), c("min", "max")) expect_equal(colnames(support(d)), c("min", "max")) expect_equal(rownames(support(d)), LETTERS[1:length(d)]) })