# These tests are intended to be run under valgrind so we can make sure there # are no compiled code issues. It's basically impossible to run the full test # suite under valgrind because there are lots of false positives from the PCRE # library. # # Orinally these were the ses tests, but even the testthat overhead caused too # many issues so we're just running the code without checking results. writeLines("basic") # expect_equal(ses(letters[1:10], letters[1:10]), character()) ses(letters[1:10], letters[1:10]) # expect_equal(ses(letters[1:10], LETTERS[1:10]), "1,10c1,10") ses(letters[1:10], LETTERS[1:10]) # expect_equal(ses(letters[1:5], LETTERS[1:10]), "1,5c1,10") ses(letters[1:5], LETTERS[1:10]) # expect_equal(ses(letters[1:10], LETTERS[1:5]), "1,10c1,5") ses(letters[1:10], LETTERS[1:5]) # expect_equal(ses(letters[2:10], letters[1:7]), c("0a1", "7,9d7")) ses(letters[2:10], letters[1:7]) # expect_equal(ses(letters[c(1:5, 1:5, 1:5)], c("e", "d", "a", # "b", "c")), c("1,4d0", "6,8d1", "10d2", "14,15d5")) ses(letters[c(1:5, 1:5, 1:5)], c("e", "d", "a", "b", "c")) # expect_equal(ses(c("e", "d", "a", "b", "c"), letters[c(1:5, 1:5, # 1:5)]), c("0a1,4", "1a6,8", "2a10", "5a14,15")) ses(c("e", "d", "a", "b", "c"), letters[c(1:5, 1:5, 1:5)]) writeLines("trigger edit distance 1 branches") # expect_equal(ses("a", c("a", "b")), "1a2") ses("a", c("a", "b")) # expect_equal(ses(c("a", "b"), "a"), "2d1") ses(c("a", "b"), "a") # expect_equal(ses("c", c("b", "c")), "0a1") ses("c", c("b", "c")) # expect_equal(ses(c("b", "c"), "c"), "1d0") ses(c("b", "c"), "c") # expect_equal(ses("a", character()), "1d0") ses("a", character()) # expect_equal(ses(character(), "a"), "0a1") ses(character(), "a") # expect_equal(ses(character(), character()), character()) ses(character(), character()) ## this is from the atomic tests, haven't dug into why they actually trigger ## the desired branches, but it is fairly complex set.seed(2) w1 <- sample(c("carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta", "boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake"), 25, replace = TRUE) w4 <- w3 <- w2 <- w1 w2[sample(seq_along(w1), 5)] <- LETTERS[1:5] w3 <- w1[8:15] w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5])) # expect_equal(ses(w1, w4), c("5a6,10", "15,21d19", "23,25c21,25")) ses(w1, w4) writeLines("longer strings") # A bigger string string <- do.call(paste0, expand.grid(LETTERS, LETTERS, LETTERS)) # expect_equal(ses(string, c("hello", string[-c(5, 500, 1000)], # "goodbye")), c("0a1", "5d5", "500d499", "1000d998", "17576a17575")) ses(string, c("hello", string[-c(5, 500, 1000)], "goodbye")) # expect_equal(ses(c(string[200:500], "hello", string[-(1:400)][-c(5, # 500, 1000)]), string), c("0a1,199", "207,306d405", "800a900", # "1299a1400")) ses(c(string[200:500], "hello", string[-(1:400)][-c(5, 500, 1000)]), string) writeLines("max diffs") # expect_warning(ses(letters[1:10], LETTERS[1:10], max.diffs = 5), # "Exceeded `max.diffs`") suppressWarnings(ses(letters[1:10], LETTERS[1:10], max.diffs = 5)) # expect_equal(ses(letters[1:10], LETTERS[1:10], max.diffs = 5, # warn = FALSE), "1,10c1,10") ses(letters[1:10], LETTERS[1:10], max.diffs = 5, warn = FALSE) # expect_equal(ses(letters[1:10], c(letters[1], LETTERS[2:5], letters[6:10]), # max.diffs = 5, warn = FALSE), "2,5c2,5") ses(letters[1:10], c(letters[1], LETTERS[2:5], letters[6:10]), max.diffs = 5, warn = FALSE) # expect_equal(ses(letters[1:10], c(letters[1], LETTERS[2:5], letters[6:8], # LETTERS[9], letters[10]), max.diffs = 5, warn = FALSE), c("2,5c2,5", # "9c9")) ses(letters[1:10], c(letters[1], LETTERS[2:5], letters[6:8], LETTERS[9], letters[10]), max.diffs = 5, warn = FALSE) writeLines("corner cases?") # expect_equal(ses(letters[1:4], letters[1:3]), "4d3") ses(letters[1:4], letters[1:3]) # expect_equal(ses(letters[1:3], letters[1:4]), "3a4") ses(letters[1:3], letters[1:4]) # ses(1, 2:9, max.diffs = 8) # h/t @gadenbui, data is extracted from palmerpenguins@0.1.0::penguins # # comparison <- subset(penguins, year == 2007 | flipper_length_mm > 220) # test <- subset(penguins, year == 2008) # a <- test$bill_length_mm # b <- comparison$bill_length_mm a <- c(39.6, 40.1, 35, 42, 34.5, 41.4, 39, 40.6, 36.5, 37.6, 35.7, 41.3, 37.6, 41.1, 36.4, 41.6, 35.5, 41.1, 35.9, 41.8, 33.5, 39.7, 39.6, 45.8, 35.5, 42.8, 40.9, 37.2, 36.2, 42.1, 34.6, 42.9, 36.7, 35.1, 37.3, 41.3, 36.3, 36.9, 38.3, 38.9, 35.7, 41.1, 34, 39.6, 36.2, 40.8, 38.1, 40.3, 33.1, 43.2, 49.1, 48.4, 42.6, 44.4, 44, 48.7, 42.7, 49.6, 45.3, 49.6, 50.5, 43.6, 45.5, 50.5, 44.9, 45.2, 46.6, 48.5, 45.1, 50.1, 46.5, 45, 43.8, 45.5, 43.2, 50.4, 45.3, 46.2, 45.7, 54.3, 45.8, 49.8, 46.2, 49.5, 43.5, 50.7, 47.7, 46.4, 48.2, 46.5, 46.4, 48.6, 47.5, 51.1, 45.2, 45.2, 50.5, 49.5, 46.4, 52.8, 40.9, 54.2, 42.5, 51, 49.7, 47.5, 47.6, 52, 46.9, 53.5, 49, 46.2, 50.9, 45.5) b <- c(39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42, 37.8, 37.8, 41.1, 38.6, 34.6, 36.6, 38.7, 42.5, 34.4, 46, 37.8, 37.7, 35.9, 38.2, 38.8, 35.3, 40.6, 40.5, 37.9, 40.5, 39.5, 37.2, 39.5, 40.9, 36.4, 39.2, 38.8, 42.2, 37.6, 39.8, 36.5, 40.8, 36, 44.1, 37, 39.6, 41.1, 37.5, 36, 42.3, 46.1, 50, 48.7, 50, 47.6, 46.5, 45.4, 46.7, 43.3, 46.8, 40.9, 49, 45.5, 48.4, 45.8, 49.3, 42, 49.2, 46.2, 48.7, 50.2, 45.1, 46.5, 46.3, 42.9, 46.1, 44.5, 47.8, 48.2, 50, 47.3, 42.8, 45.1, 59.6, 49.6, 50.5, 50.5, 50.1, 50.4, 46.2, 54.3, 49.8, 49.5, 50.7, 46.4, 48.2, 48.6, 45.2, 52.5, 50, 50.8, 52.1, 52.2, 49.5, 50.8, 46.9, 51.1, 55.9, 49.1, 49.8, 51.5, 55.1, 48.8, 50.4, 46.5, 50, 51.3, 45.4, 52.7, 45.2, 46.1, 51.3, 46, 51.3, 46.6, 51.7, 47, 52, 45.9, 50.5, 50.3, 58, 46.4, 49.2, 42.4, 48.5, 43.2, 50.6, 46.7, 52) # In <0.3.4: Exceeded buffer for finding fake snake ses(a[-c(15:38, 50:90)], b[-c(40:85, 100:125)], max.diffs=80) # In <0.3.4: Faux Snake Process Failed ses(a[-(18:38)], b[-(50:80)], max.diffs=115) # issue 157 # Arguably could match on 'A' instead of 'X' and be more comparct a <- c('a', 'b', 'c', 'A', 'X', 'Y', 'Z', 'W') b <- c('X', 'C', 'A', 'U', 1, 2, 3) ses(a, b, max.diffs=13) # segfault (but may have beend debugging code) ses(letters[1:2], LETTERS[1:2], max.diffs = 4) # snake overrun ses(c("G", "C", "T", "C", "A", "C", "G", "C"), c("T", "G"), max.diffs=2) # effect of max.diffs on compactness (waldo logical comparison) ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=0) ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=1) ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=2) # back snake all matches before faux snake triggered ses_dat( a=c("T", "A", "A", "C", "C", "A"), b=c("A", "G", "A", "A"), max.diffs = 0 ) writeLines("errors") # expect_error(ses("a", "b", max.diffs = "hello"), "must be scalar integer") try(ses("a", "b", max.diffs = "hello"), silent=TRUE) # expect_error(ses("a", "b", warn = "hello"), "must be TRUE or FALSE") try(ses("a", "b", warn = "hello"), silent=TRUE) # We want to have a test file that fully covers the C code in order to run # valgrind with just that one. We were unable to isolate simple diffs that # triggered all the code, but we were able to do it with the below in addition # to the above. # test_that("Repeat tests for full coverage in SES file", { # # From test.diffStr.R # formula display changed writeLines("model prep") frm1 <- as.formula("Sepal.Length ~ Sepal.Width", env=.GlobalEnv) frm2 <- as.formula("Sepal.Length ~ Sepal.Width + Species", env=.GlobalEnv) mdl1 <- lm(frm1, iris) mdl2 <- lm(frm2, iris) writeLines("diff str") # as.character( # diffStr(mdl1, mdl2, # extra = list(strict.width = "wrap"), line.limit = 30) # ) ## we captured the text being diffed above at the actual level, and ## also at the highest level ses( readLines('valgrind/mdl-tar.txt'), readLines('valgrind/mdl-cur.txt') ) ses( readLines('valgrind/mdl-tar-all.txt'), readLines('valgrind/mdl-cur-all.txt') ) # from testthat.warnings.R writeLines("exceeded diff") A3 <- c("a b c", "d e f A B C D", "g h i", "f") B3 <- c("a b c", "xd e f E Q L S", "g h i", "q") suppressWarnings(ses(A3, B3, max.diffs = 2)) writeLines("done")