test_that("SGS solution reduces to SGL when using constant weights, with even groups, with no intercept and no standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = rep(1:20,each=5) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights, with even groups, with intercept and no standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = rep(1:20,each=5) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights, with even groups, with intercept and standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = rep(1:20,each=5) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with no intercept and no standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = c(rep(1:5, each=3), rep(6:11, each=4), rep(12:16, each=5), rep(17:22,each=6)) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with intercept and no standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = c(rep(1:5, each=3), rep(6:11, each=4), rep(12:16, each=5), rep(17:22,each=6)) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights, with uneven groups, with intercept and standardisation", { skip_if_not_installed("sgs") n = 50 p = 100 groups = c(rep(1:5, each=3), rep(6:11, each=4), rep(12:16, each=5), rep(17:22,each=6)) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=TRUE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL under logistic regression under constant weights", { skip_if_not_installed("sgs") n = 50 p = 100 X = MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=diag(1,p)) y = 1/(1+exp(-(X %*%rnorm(p,mean=0,sd=sqrt(10)) + rnorm(n,mean=0,sd=4)))) y = ifelse(y>0.5,1,0) groups = rep(1:20,each=5) lambda = 0.1 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="l2") sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="l2",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p)) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights without screening", { skip_if_not_installed("sgs") n = 50 p = 100 groups = rep(1:20,each=5) data= sgs::gen_toy_data(p=p,n=n,rho = 0,seed_id = 4,grouped = TRUE, groups=groups,group_sparsity=0.3,var_sparsity=0.5,orthogonal = FALSE) X <- data$X y <- data$y lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none", screen = FALSE) sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="linear", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p), screen = FALSE) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) }) test_that("SGS solution reduces to SGL when using constant weights without screening for logistic regression", { skip_if_not_installed("sgs") n = 50 p = 100 X = MASS::mvrnorm(n=n,mu=rep(0,p),Sigma=diag(1,p)) y = 1/(1+exp(-(X %*%rnorm(p,mean=0,sd=sqrt(10)) + rnorm(n,mean=0,sd=4)))) y = ifelse(y>0.5,1,0) groups = rep(1:20,each=5) lambda=0.8 alpha = 0.3 sgl = dfr_sgl(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none", screen = FALSE) sgs = sgs::fit_sgs(X=X,y=y, groups=groups, type="logistic", lambda=lambda, alpha=alpha,intercept=FALSE,standardise="none",w_weights = rep(1,length(table(groups))),v_weights = rep(1,p), screen = FALSE) expect_equivalent(as.matrix(sgs$beta), as.matrix(sgl$beta), tol = 1e-3 ) })