library(collapse) NCRAN <- Sys.getenv("NCRAN") == "TRUE" # Two-Step factor estimates from monthly BM (2014) data X <- fscale(diff(qM(BM14_M))) r <- 5L # 5 Factors p <- 3L # 3 Lags n <- ncol(X) # Initializing the Kalman Filter with PCA results X_imp <- tsnarmimp(X) # Imputing Data v <- eigen(cov(X_imp))$vectors[, 1:r] # PCA F_pc <- X_imp %*% v # Principal component factor estimates C <- cbind(v, matrix(0, n, r*p-r)) # Observation matrix res <- X - tcrossprod(F_pc, v) # Residuals from static predictions R <- diag(fvar(res)) # Observation residual covariance var <- .VAR(F_pc, p) # VAR(p) A <- rbind(t(var$A), diag(1, r*p-r, r*p)) Q <- matrix(0, r*p, r*p) # VAR residual matrix Q[1:r, 1:r] <- cov(var$res) F_0 <- var$X[1L, ] # Initial factor estimate and covariance P_0 <- ainv(diag((r*p)^2) - kronecker(A,A)) %*% unattrib(Q) dim(P_0) <- c(r*p, r*p) ## Run standartized data through Kalman filter and smoother once kfs_res <- SKFS(X, A, C, Q, R, F_0, P_0, FALSE) ## Two-step solution is state mean from the Kalman smoother F_kal <- kfs_res$F_smooth[, 1:r, drop = FALSE] colnames(F_kal) <- paste0("f", 1:r) # See that this is equal to the Two-Step estimate by DFM() if(NCRAN) expect_equal(F_kal, DFM(X, r, p, em.method = "none", pos.corr = FALSE)$F_2s) else expect_equal(1L,1L) # Same in two parts kfs_res2 <- with(SKF(X, A, C, Q, R, F_0, P_0, FALSE), FIS(A, F, F_pred, P, P_pred)) F_kal2 <- kfs_res2$F_smooth[, 1:r, drop = FALSE] colnames(F_kal2) <- paste0("f", 1:r) if(NCRAN) expect_equal(F_kal, F_kal2) else expect_equal(1L,1L)