context('check ability') library(dplyr) test_that('inconsistencies between data and parms are handled correctly',{ db = open_project('../verbAggression.db') f1 = fit_enorm(db) f2 = fit_enorm(db, item_id != 'S4DoShout') f3 = fit_enorm(db, !(item_id=='S4DoShout' & item_score == 1)) # params must cover all item, item_score combinations expect_no_error({p1 = ability(db,f1)}) expect_error({p2 = ability(db,f2)}, regexp='parameters.+items') expect_error({p3 = ability(db,f3)}, regexp='parameters.+scores') # of course the reverse is not necessary expect_no_error({p4 = ability(db,f1,item_score !=2 )}) dbDisconnect(db) }) test_that('verbAgg abilities', { db = open_project('../verbAggression.db') f = fit_enorm(db) # check ability mle is inverse of expected_score es = expected_score(f) expect_lt( ability_tables(f) %>% filter(is.finite(theta)) %>% mutate(error = abs(booklet_score - es(theta))) %>% pull(error) %>% mean(), 0.00001, label = "ability_tables mle on average estimated to within .00001 of test_score") nscores = get_rules(db) %>% group_by(item_id) %>% summarize(m=max(item_score)) %>% ungroup() %>% pull(m) %>% sum() + 1 test_cases = list(MLE = c('MLE','normal'), WLE = c('WLE','normal'), EAP_normal = c('EAP','normal'), EAP_J = c('EAP','Jeffreys')) res = lapply(test_cases, function(s){ ability_tables(f, method = s[1], prior = s[2])}) expect_false(any(sapply(lapply(res,'[[','theta'), is.unsorted)), info='abilities not increasing verbAgg') theta = do.call(cbind,lapply(res,'[[','theta')) expect_true(sum(!apply(theta,1,is.finite)) == 2 && !any(is.finite(theta[c(1,nscores),1])), info='inifinity only in MLE') theta[!is.finite(theta)] = NA r = cor(theta,use='pairwise') expect_true(all(r >= .99), info='high correlation ability estimates one booklet') expect_true(all(r[upper.tri(r)] < 1), info='different abnility methods are different') dbDisconnect(db) })