test_that("1-dimensional kliep estimation and prediction works", { set.seed(1) dr <- kliep(numerator_small$x3, denominator_small$x3) summdr <- summary(dr) expect_s3_class(dr, "kliep") expect_s3_class(summdr, "summary.kliep") expect_invisible(print(summdr)) expect_equal(summdr$centers, dr$centers) expect_equal(summdr$alpha_opt, dr$alpha_opt) expect_equal(summdr$sigma_opt, dr$sigma_opt) pred <- predict(dr)[, 1] expect_gt(mean(log(pmax(1e-3, pred))), 0) expect_lt(mean(log(pmax(1e-3, predict(dr, denominator_small$x3)[,1]))), 0) dr <- kliep(numerator_small$x3, denominator_small$x3, sigma = 2, scale = NULL) summdr <- summary(dr, test = TRUE) expect_lte(summdr$p_value, 1) expect_invisible(print(dr)) expect_invisible(print(summdr)) }) test_that("multidimensional kliep estimation and prediction works", { set.seed(1) dr <- kliep(numerator_small, denominator_small) expect_s3_class(dr, "kliep") expect_true( ggplot2::is_ggplot( suppressWarnings(plot(dr)) ) ) expect_gt(mean(log(pmax(1e-3, predict(dr)))), 0) expect_lt(mean(log(pmax(1e-3, predict(dr, denominator_small)[,1]))), 0) dr <- kliep(numerator_small, denominator_small, sigma = 2, ncenters = 100, scale = NULL) expect_type(dr$alpha_opt, "double") expect_type(dr$sigma, "double") expect_type(predict(dr, sigma = 3), "double") Dnu <- distance( as.matrix(numerator_small), as.matrix(numerator_small), FALSE ) Dde <- distance( as.matrix(denominator_small), as.matrix(numerator_small), FALSE ) est <- compute_kliep(Dnu, Dde, 2, check.epsilon(NULL), 5000, rep(0, nrow(Dnu)), FALSE) expect_equal(est$cv_score, 0, ignore_attr = TRUE) expect_type(est$alpha, "double") })