context("Test deeptrafo residuals") if (.Platform$OS.type != "windows" && reticulate::py_available() && reticulate::py_module_available("tensorflow") && reticulate::py_module_available("keras") && reticulate::py_module_available("tensorflow_probability")) { if (FALSE) { test_that("residuals coincide with tram (ordinal)", { library("tram") data("wine", package = "ordinal") tm <- Polr(rating ~ temp + contact, data = wine) m <- deeptrafo(rating ~ 0 + temp + contact, data = wine, optimizer = optimizer_adam(learning_rate = 0.1, decay = 1e-4) ) fit(m, epochs = 3e2, validation_split = NULL, batch_size = nrow(wine), verbose = FALSE ) expect_equal(residuals(m), residuals(tm), tolerance = 1e-4) }) # test_that("residuals coincide with tram (ordinal, rv)", { # library(tram) # tn <- 1e2 # df <- data.frame(y = ordered(sample.int(5, tn, TRUE)), # x = factor(sample.int(2, tn, TRUE)), # z = factor(sample.int(2, tn, TRUE))) # # tm <- Polr(y | 0 + x ~ z, data = df) # m <- deeptrafo(y | x ~ 0 + z, data = df, optimizer = optimizer_adam( # learning_rate = 0.1, decay = 1e-3)) # fit(m, epochs = 3e3, validation_split = NULL, batch_size = tn) # # nd <- expand.grid(y = sort(unique(df$y)), # x = sort(unique(df$x)), # z = sort(unique(df$z))) # nd$deeptrafo <- residuals(m, newdata = nd) # nd$tram <- residuals(tm, newdata = nd) # nd # # expect_equal(residuals(m), residuals(tm), tolerance = 1e-1) # }) test_that("residuals coincide with tram (continuous)", { library(tram) tm <- Lm(dist ~ speed, data = cars, support = range(cars$dist)) m <- LmNN(dist ~ 0 + speed, data = cars) cfx <- coef(tm, with_baseline = TRUE) tmp <- get_weights(m$model) tmp[[1]][] <- c(cfx[1], log(exp(cfx[2]) - 1)) tmp[[2]][] <- -cfx[length(cfx)] set_weights(m$model, tmp) expect_equal(residuals(m), residuals(tm), tolerance = 1e-4) }) test_that("residuals coincide with tram (continuous, Bernstein)", { library(tram) tm <- Colr(dist ~ speed, data = cars, support = range(cars$dist)) m <- ColrNN(dist ~ 0 + speed, data = cars, order = 6) cfx <- coef(tm, with_baseline = TRUE) tmp <- get_weights(m$model) tmp[[1]][] <- c(cfx[1], log(exp(diff(cfx[-length(cfx)])) - 1)) tmp[[2]][] <- cfx[length(cfx)] set_weights(m$model, tmp) expect_equal( unname(c(unlist(coef(m, which = "interacting")), unlist(coef(m)))), unname(cfx), tol = 1e-5 ) expect_equal(residuals(m), residuals(tm), tolerance = 1e-4) }) } }