context("Test deeptrafo") if (.Platform$OS.type != "windows" && reticulate::py_available() && reticulate::py_module_available("tensorflow") && reticulate::py_module_available("keras") && reticulate::py_module_available("tensorflow_probability")) { # source("tests/testthat/test-funs.R") source("test-funs.R") # Additive models --------------------------------------------------------- test_that("simple additive model", { dat <- data.frame( y = rnorm(100), x = rnorm(100), z = rnorm(100), f = factor(sample(0:1, 100, TRUE)) ) fml <- y | f ~ z + s(z) m <- deeptrafo(fml, dat) check_methods(m, newdata = dat, test_plots = FALSE) }) test_that("unconditional additive model", { dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) valdat <- data.frame(y = rcauchy(100), x = rcauchy(100), z = rcauchy(100)) fml <- y ~ 1 m <- deeptrafo(fml, dat) hist <- fit(m, epochs = 10, validation_data = list(x = valdat, y = valdat$y), verbose = FALSE ) expect_false(any(is.nan(hist$metrics$loss))) check_methods(m, newdata = dat, test_plots = FALSE) }) # Ordinal ----------------------------------------------------------------- test_that("unconditional ordinal model", { test_models(y ~ 1) }) test_that("ordinal model", { test_models(y ~ x) }) test_that("ordinal model with smooth effects", { test_models(y ~ s(z)) }) test_that("ordinal model with response-varying effects", { test_models(y | x ~ s(z)) }) test_that("monotonicity problem (ordinal case)", { test_models(y | s(x) ~ z) }) test_that("ordinal model with NN component", { nn <- keras_model_sequential() %>% layer_dense(input_shape = 1L, units = 6L, activation = "relu") %>% layer_dense(units = 1L) test_models(y ~ nn(x), list_of_deep_models = list(nn = nn)) }) test_that("ordinal NLL works", { df <- data.frame(y = ordered(rep(1:5, each = 5))) m <- deeptrafo(y ~ 1, data = df) fit(m, validation_split = NULL, epochs = 10, batch_size = nrow(df), verbose = FALSE ) # coef(m); coef(m, "interacting") cf0 <- qlogis((1:4) / 5) ll0 <- -nrow(df) * log(1 / 5) sp_inv <- function(x) c(x[1], log(exp(diff(x)) - 1), -Inf) tmp <- get_weights(m$model) tmp[[2]][] <- 0.0 tmp[[1]][] <- sp_inv(cf0) set_weights(m$model, tmp) cf <- coef(m, which = "interacting") tloss <- nll("logistic") ll <- tloss(m$init_params$y, fitted(m))$numpy() expect_equal(ll0, sum(ll), tolerance = 1e-5) expect_equal(cf0, unname(unlist(cf))[1:4], tol = 1e-4) }) # Count models ------------------------------------------------------------ test_that("unconditional count model", { test_models(y ~ 1, which = "count") }) test_that("count model", { test_models(y ~ x, which = "count") }) test_that("count model with smooth effects", { test_models(y ~ s(z), which = "count") }) test_that("count model with response-varying effects", { test_models(y | f ~ s(z), which = "count") }) test_that("monotonicity problem (count case)", { test_models(y | s(x) ~ z, which = "count") }) test_that("count model with NN component", { nn <- keras_model_sequential() %>% layer_dense(input_shape = 1L, units = 6L, activation = "relu") %>% layer_dense(units = 1L) test_models(y ~ nn(x), list_of_deep_models = list(nn = nn), which = "count") }) # Survival models -------------------------------------------------------- test_that("unconditional survival model", { test_models(y ~ 1, which = "survival") }) test_that("survival model", { test_models(y ~ x, which = "survival") }) test_that("survival model with smooth effects", { test_models(y ~ s(z), which = "survival") }) test_that("survival model with response-varying effects", { test_models(y | f ~ s(z), which = "survival") }) test_that("monotonicity problem (survival case)", { test_models(y | s(x) ~ z, which = "survival") }) test_that("survival model with NN component", { nn <- keras_model_sequential() %>% layer_dense(input_shape = 1L, units = 6L, activation = "relu") %>% layer_dense(units = 1L) test_models(y ~ nn(x), list_of_deep_models = list(nn = nn), which = "survival") test_models(y | nn(x) ~ 1, list_of_deep_models = list(nn = nn), which = "survival") }) # Autoregressive models --------------------------------------------------- test_that("autoregressive transformation model", { dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) fml <- y | s(x) ~ 0 + s(z) + atplag(1, 2) # max lag (i.e. 2) reduces data set (also at predict) m <- deeptrafo(fml, dat) expect_is(predict(m, newdata = dat[1:10, -1], K = 2, type = "pdf"), "list") expect_is(predict(m, newdata = dat[1:10, -1], q = c(-1, 1), type = "pdf"), "list") check_methods(m, newdata = dat) cf <- coef(m, which_param = "autoregressive") expect_equal(length(cf), 2) }) test_that("autoregressive count transformation model", { dat <- data.frame(y = round(rnorm(100, mean = 1e3, sd = 20)), x = rnorm(100), z = rnorm(100)) fml <- y | s(x) ~ 0 + s(z) + atplag(1, 2) # max lag (i.e. 2) reduces data set (also at predict) m <- deeptrafo(fml, dat) expect_is(predict(m, newdata = dat[1:10, -1], K = 2, type = "pdf"), "list") expect_is(predict(m, newdata = dat[1:10, -1], q = range(dat$y), type = "pdf"), "list") check_methods(m, newdata = dat) cf <- coef(m, which_param = "autoregressive") expect_equal(length(cf), 2) }) test_that("autoregressive transformation model specification", { dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) dat <- na.omit(dat) expect_length(coef(deeptrafo(y ~ atplag(1), data = dat), which = "auto"), 1) expect_length(coef(deeptrafo(y ~ atplag(1:2), data = dat), which = "auto"), 2) }) # Misc -------------------------------------------------------------------- test_that("model with fixed weight", { data("wine", package = "ordinal") m <- deeptrafo(response ~ temp, data = wine, weight_options = weight_control( warmstart_weights = list(list(), list(), list("temp" = 0)) ) ) expect_equal(unname(coef(m, which_param = "shifting")$temp[1, 1]), 0) }) # Deep -------------------------------------------------------------------- test_that("deep conditional model", { dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) deep_model <- function(x) { x %>% layer_dense(units = 32, activation = "relu", use_bias = FALSE) %>% layer_dropout(rate = 0.2) %>% layer_dense(units = 8, activation = "relu") } fml <- y | d(x) ~ z + s(z) m <- deeptrafo(fml, dat, list_of_deep_models = list(d = deep_model)) check_methods(m, dat[1:10, ], FALSE, FALSE) }) # Shared ----------------------------------------------------------------- # test_that("shared model", { # # dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) # # deep_model <- function(x) x %>% # layer_dense(units = 32, activation = "relu", use_bias = FALSE) %>% # layer_dropout(rate = 0.2) %>% # layer_dense(units = 8, activation = "relu") # # fml <- y | x ~ z + s(z) | d(x) # m <- deeptrafo(fml, dat, list_of_deep_models = list(d = deep_model), # shared_partition = 7) # # check_methods(m, dat[1:10, ], FALSE, FALSE) # # }) }