context("Test deep ensembles") if (.Platform$OS.type != "windows" && reticulate::py_available() && reticulate::py_module_available("tensorflow") && reticulate::py_module_available("keras") && reticulate::py_module_available("tensorflow_probability")) { # FUNs -------------------------------------------------------------------- check_ensemble <- function(formula = y ~ 1, type = c( "continuous", "ordinal", "count", "survival" ), which_ensemble = c("dr", "trf"), ...) { type <- match.arg(type) which_ensemble <- match.arg(which_ensemble) dgp <- switch(type, "continuous" = dgp_cont, "ordinal" = dgp_ordinal, "count" = dgp_count, "survival" = dgp_surv ) df <- dgp() if (which_ensemble == "dr") { m <- deeptrafo(formula, df, ... = ...) ens <- ensemble(m, n_ensemble = 2L, verbose = FALSE) } else if (which_ensemble == "trf") { ens <- trafoensemble(formula, df, ...) } check_ensemble_methods(ens) } check_ensemble_methods <- function(object) { expect_is(object$ensemble_results[[1]], "keras_training_history") expect_is(coef(object, which = "interacting")[[1]], "matrix") expect_is(coef(object, which = "shifting")[[1]], "matrix") expect_is(fitted(object), "list") invisible(object) } dgp_cont <- function(n = 100) { data.frame( y = rnorm(n), x = abs(rnorm(n)), z = rnorm(n) ) } dgp_ordinal <- function(ncl = 6L, n = 100) { data.frame( y = ordered(sample.int(ncl, n, replace = TRUE)), x = abs(rnorm(n)), z = rnorm(n) ) } dgp_count <- function(n = 100) { data.frame( y = sample.int(50, size = n, replace = TRUE), x = abs(rnorm(n)), z = rnorm(n), f = factor(sample.int(2, size = n, replace = TRUE)) ) } dgp_surv <- function(n = 100) { data.frame( y = survival::Surv(abs(rnorm(n, sd = 10)), sample(0:1, n, TRUE)), x = abs(rnorm(n)), z = rnorm(n), f = factor(sample.int(2, size = n, replace = TRUE)) ) } # Tests ------------------------------------------------------------------- test_that("deep ensemble with continuous outcome", { dnn <- function(x) { x %>% layer_dense(units = 2L, activation = "relu") %>% layer_dense(units = 1L, use_bias = FALSE) } ens <- check_ensemble(y ~ 1, type = "continuous") ens <- check_ensemble(y ~ dnn(x), type = "continuous", list_of_deep_models = list(dnn = dnn) ) ens <- check_ensemble(y ~ 1, type = "continuous", which_ensemble = "trf") ens <- check_ensemble(y ~ dnn(x), type = "continuous", list_of_deep_models = list(dnn = dnn), which_ensemble = "trf" ) }) test_that("deep ensemble with ordinal outcome", { dnn <- function(x) { x %>% layer_dense(units = 2L, activation = "relu") %>% layer_dense(units = 1L, use_bias = FALSE) } ens <- check_ensemble(y ~ 1, type = "ordinal") ens <- check_ensemble(y ~ dnn(x), type = "ordinal", list_of_deep_models = list(dnn = dnn) ) ens <- check_ensemble(y ~ 1, type = "ordinal", which_ensemble = "trf") ens <- check_ensemble(y ~ dnn(x), type = "ordinal", list_of_deep_models = list(dnn = dnn), which_ensemble = "trf" ) }) test_that("deep ensemble with survival outcome", { dnn <- function(x) { x %>% layer_dense(units = 2L, activation = "relu") %>% layer_dense(units = 1L, use_bias = FALSE) } ens <- check_ensemble(y ~ 1, type = "survival") ens <- check_ensemble(y ~ dnn(x), type = "survival", list_of_deep_models = list(dnn = dnn) ) ens <- check_ensemble(y ~ 1, type = "survival", which_ensemble = "trf") ens <- check_ensemble(y ~ dnn(x), type = "survival", list_of_deep_models = list(dnn = dnn), which_ensemble = "trf" ) }) test_that("deep ensemble with count outcome", { dnn <- function(x) { x %>% layer_dense(units = 2L, activation = "relu") %>% layer_dense(units = 1L, use_bias = FALSE) } ens <- check_ensemble(y ~ 1, type = "count") ens <- check_ensemble(y ~ dnn(x), type = "count", list_of_deep_models = list(dnn = dnn) ) ens <- check_ensemble(y ~ 1, type = "count", which_ensemble = "trf") ens <- check_ensemble(y ~ dnn(x), type = "count", list_of_deep_models = list(dnn = dnn), which_ensemble = "trf" ) }) test_that("ensembles with callbacks, custom optimizers work", { df <- dgp_cont() ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1), n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3) ) cfb <- unname(c(unlist(coef(ens)))) expect_equal(cfb, rep(cfb[1], 3)) expect_equal(ll <- unname(unlist(logLik(ens))), unname(rep(ll[1], 5))) ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1), n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3), callbacks = list(callback_early_stopping()), validation_split = 0.05 ) expect_length(ens$ensemble_results[[2]]$metrics$loss, 2) }) test_that("reinit works as expected", { df <- dgp_cont() ### No special args ens <- trafoensemble(y ~ 1, data = df, n_ensemble = 3, seed = c(2, 10, 20), tf_seeds = c(2, 10, 20), epochs = 3, validation_split = 0.1 ) expect_false(any(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom optimizer ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = c(2, 10, 20), tf_seeds = c(2, 10, 20), epochs = 3, validation_split = 0.1 ) expect_false(any(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom callback ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = c(2, 10, 20), tf_seeds = c(2, 10, 20), epochs = 3, callbacks = callback_early_stopping(patience = 0), validation_split = 0.1 ) expect_false(any(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom neural network ens <- trafoensemble(y ~ nn(x), data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = c(2, 10, 20), tf_seeds = c(2, 10, 20), epochs = 3, callbacks = callback_early_stopping(patience = 0), validation_split = 0.1, list_of_deep_models = list( nn = \(x) x %>% layer_dense(1, activation = "relu") ) ) expect_false(any(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### No special args + seed ens <- trafoensemble(y ~ 1, data = df, n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3), epochs = 3, validation_split = 0.1 ) expect_true(all(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom optimizer + seed ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3), epochs = 3, validation_split = 0.1 ) expect_true(all(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom callback + seed ens <- trafoensemble(y ~ 1, data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3), epochs = 3, callbacks = callback_early_stopping(patience = 0), validation_split = 0.1 ) expect_true(all(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) ### Custom neural network + seed ens <- trafoensemble(y ~ nn(x), data = df, optimizer = optimizer_adam(1e-4), n_ensemble = 3, seed = rep(1, 3), tf_seeds = rep(1, 3), epochs = 3, callbacks = callback_early_stopping(patience = 0), validation_split = 0.1, list_of_deep_models = list( nn = \(x) x %>% layer_dense(1, activation = "relu") ) ) expect_true(all(ens$ensemble_results[[1]]$metrics$loss == ens$ensemble_results[[2]]$metrics$loss)) }) test_that("weighted transformation ensemble", { set.seed(123) dgp <- function(n = 1e2) { x <- runif(n) y <- sin(x * pi * 3) + rnorm(n, sd = 0.1) data.frame(y = y, x = x) } ### Generate train, validation, test data train_data <- dgp() validation_data <- dgp() test_data <- dgp() ### Train ensemble with early stopping (separate validation split) ens <- trafoensemble( y ~ x, data = train_data, epochs = 10, n_ensemble = 3, verbose = FALSE, validation_split = 0.1, optimizer = optimizer_adam(learning_rate = 0.1), callbacks = list(callback_early_stopping(patience = 50)) ) ### Compute the optimal weights on the validation data (weights = NULL; default) tuned <- weighted_logLik(ens, newdata = validation_data) expect_true(all(tuned$weights <= 1)) expect_true(all(tuned$weights >= 0)) expect_length(tuned$weights, 3L) expect_lt(tuned$ensemble, tuned$mean) ### Use optimal weights and make test predictions (weights = tuned$weights) test_nll <- weighted_logLik(ens, weights = tuned$weights, newdata = test_data) expect_equal(tuned$weights, test_nll$weights) expect_lt(test_nll$ensemble, test_nll$mean) }) }