context("Test aliases") if (.Platform$OS.type != "windows" && reticulate::py_available() && reticulate::py_module_available("tensorflow") && reticulate::py_module_available("keras") && reticulate::py_module_available("tensorflow_probability")) { # source("tests/testthat/test-funs.R") source("test-funs.R") test_alias <- function(rsp, int = NULL, shi = NULL, FUN = dctm, which = c("ordinal", "count", "survival"), ...) { which <- match.arg(which) DGP <- switch(which, "ordinal" = dgp_ordinal, "count" = dgp_count, "survival" = dgp_surv ) dat <- DGP() m <- FUN(response = rsp, intercept = int, shift = shi, data = dat, ...) if (which == "ordinal") { expect_false(any(is.nan(m$model$loss( t(sapply(dat$y, eval_ord)), fitted(m) )$numpy()))) } hist <- fit(m, epochs = 2L, verbose = FALSE) if (which == "ordinal") { expect_equal(m$init_params$trafo_options$order_bsp, 5L) } expect_false(any(is.nan(hist$metrics$loss))) } # Alias ------------------------------------------------------------------- test_that("simple additive model", { dat <- data.frame( y = rnorm(100), x = rnorm(100), z = rnorm(100), f = factor(sample(0:1, 100, TRUE)) ) # DCTM m <- dctm(response = ~y, intercept = ~f, shift = ~ 0 + z + s(z), data = dat) check_methods(m, newdata = dat, test_plots = FALSE) # Tram-like aliases m <- BoxCoxNN(y | f ~ z + s(z), data = dat) check_methods(m, newdata = dat, test_plots = FALSE) m <- LehmanNN(y | f ~ z + s(z), data = dat) check_methods(m, newdata = dat, test_plots = FALSE) m <- ColrNN(y | f ~ z + s(z), data = dat) check_methods(m, newdata = dat, test_plots = FALSE) expect_error(PolrNN(y | f ~ z + s(z), data = dat)) }) # Ordinal ----------------------------------------------------------------- test_that("unconditional ordinal model", { test_alias(~y) }) test_that("ordinal model", { test_alias(~y, NULL, ~x) test_alias(~y, NULL, ~x, FUN = ontram) }) test_that("count model with NN component", { nn <- keras_model_sequential() %>% layer_dense(input_shape = 1L, units = 6L, activation = "relu") %>% layer_dense(units = 1L) test_alias(~y, NULL, ~ nn(x), list_of_deep_models = list(nn = nn), which = "count") }) test_that("survival model with response-varying effects", { test_alias(~y, ~f, ~ s(z), which = "survival") }) test_that("autoregressive transformation model", { dat <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100)) m <- dctm(~y, ~ s(x), ~ z + s(z) + atplag(1:2), data = dat) hist <- fit(m, epochs = 2L, verbose = FALSE) expect_false(any(is.nan(hist$metrics$loss))) }) # Gompertz ---------------------------------------------------------------- test_that("gompertz base distribution works for ordinal case", { library(tram) data("wine", package = "ordinal") wine$noise <- rnorm(nrow(wine)) fml <- rating ~ 0 + temp optimizer <- optimizer_adam(learning_rate = 0.1, decay = 5e-4) m <- deeptrafo(fml, wine, latent_distr = "gompertz", monitor_metric = NULL, optimizer = optimizer ) m %>% fit( epochs = 300, batch_size = nrow(wine), validation_split = 0, verbose = FALSE ) llm <- logLik(m) lltm <- c(logLik(tm <- Polr(rating ~ temp, data = wine, method = "cloglog"))) expect_equal(llm, lltm, tolerance = 1e-3) }) # Coxph ------------------------------------------------------------------- test_that("CoxphNN gives same results as tram::Coxph", { set.seed(1) library(tram) tord <- 3 d <- dgp_surv() tm <- Coxph(y ~ x, data = d, order = tord, support = range(d$y[, 1])) m <- CoxphNN(y ~ 0 + x, data = d, order = tord) tmp <- get_weights(m$model) .to_gamma <- function(thetas) { gammas <- c(thetas[1L], log(exp(diff(thetas)) - 1)) if (any(!is.finite(gammas))) { gammas[!is.finite(gammas)] <- 1e-20 } return(gammas) } tmp[[1]][] <- .to_gamma(coef(tm, with_baseline = TRUE)[1:(tord + 1)]) tmp[[2]][] <- coef(tm) set_weights(m$model, tmp) llm <- -logLik(m) lltm <- -c(logLik(tm)) expect_equal(llm, lltm, tol = 1e-3) }) # Lm ---------------------------------------------------------------------- test_that("LmNN gives same results as tram::Lm", { set.seed(1) library(tram) df <- data.frame(y = 10 + rnorm(50), x = rnorm(50)) optimizer <- optimizer_adam(learning_rate = 0.1, decay = 4e-4) m <- LmNN(y ~ 0 + x, data = df, optimizer = optimizer) # fit(m, epochs = 1800L, validation_split = 0) mm <- Lm(y ~ x, data = df, support = range(df$y)) cfb <- coef(mm, with_baseline = TRUE) tmp <- get_weights(m$model) tmp[[1]][] <- c(cfb[1], log(exp(cfb[2]) - 1)) tmp[[2]][] <- -cfb[3] set_weights(m$model, tmp) expect_equal(c(logLik(mm)), logLik(m), tol = 1e-3) }) # Survreg ----------------------------------------------------------------- test_that("SurvregNN gives same results as tram::Survreg", { set.seed(1) library(tram) d <- dgp_surv() tm <- Survreg(y ~ x, data = d, support = range(d$y[, 1])) m <- SurvregNN(y ~ 0 + x, data = d) cfb <- coef(tm, with_baseline = TRUE) tmp <- get_weights(m$model) tmp[[1]][] <- c(cfb[1], log(exp(cfb[2]) - 1)) tmp[[2]][] <- -cfb[3] set_weights(m$model, tmp) llm <- -logLik(m) lltm <- -c(logLik(tm)) expect_equal(llm, lltm, tol = 1e-3) }) }