context("Model Builder") test_that("model_builder", { n <- 1000 data = data.frame(matrix(rnorm(4*n), c(n,4))) colnames(data) <- c("x1","x2","x3","xa") formula <- ~ 1 + deep_model(x1,x2,x3) + s(xa) + x1 deep_model <- function(x) x %>% layer_dense(units = 32, activation = "relu", use_bias = FALSE) %>% layer_dropout(rate = 0.2) %>% layer_dense(units = 8, activation = "relu") %>% layer_dense(units = 1, activation = "linear") y <- rnorm(n) + data$xa^2 + data$x1 # check fake custom model mod <- deepregression( list_of_formulas = list(loc = ~ 1 + s(xa) + x1, scale = ~ 1), data = data, y = y, list_of_deep_models = list(deep_model = deep_model), model_fun = build_customKeras() ) expect_equal(class(mod$model)[1], "models.custom_train_step.customKeras") ret <- mod %>% fit(epochs = 2) })