test_that("mdl_glmnet with cv is working", { # Simulate a small dataset nobs <- 100 X <- matrix(rnorm(nobs*50), nobs, 50) # Simulate features y <- 1 + X %*% (10*runif(50) * (runif(50) < 0.1)) + rnorm(nobs) # Estimate the learner mdl_fit <- mdl_glmnet(y, X) # Check methods predict() fitted <- predict(mdl_fit, newdata = X) # Check output with expectations expect_equal(length(fitted), 100) })#TEST_THAT test_that("mdl_glmnet w/o cv is working", { # Simulate a small dataset nobs <- 100 X <- matrix(rnorm(nobs*50), nobs, 50) # Simulate features y <- 1 + X %*% (10*runif(50) * (runif(50) < 0.1)) + rnorm(nobs) # Estimate the learner mdl_fit <- mdl_glmnet(y, X, cv = FALSE) # Check methods predict() fitted <- predict(mdl_fit, newdata = X) # Check output with expectations expect_equal(length(fitted), 100) })#TEST_THAT test_that("mdl_xgboost is working", { # Simulate a small dataset nobs <- 100 X <- matrix(rnorm(nobs*50), nobs, 50) # Simulate features y <- 1 + X %*% (10*runif(50) * (runif(50) < 0.1)) y <- 1 * (y - mean(y) >= rnorm(nobs)) # Estimate the learner mdl_fit_reg <- mdl_xgboost(y, X) mdl_fit_probability <- mdl_xgboost(y, X, objective = "binary:logistic") # Check methods predict() fitted_ref <- predict(mdl_fit_reg, newdata = X) fitted_probability <- predict(mdl_fit_probability, newdata = X) # Check output with expectations expect_equal(length(fitted_ref), 100) expect_equal(length(fitted_probability), 100) })#TEST_THAT test_that("mdl_ranger is working", { # Simulate a small dataset nobs <- 100 X <- matrix(rnorm(nobs*50), nobs, 50) # Simulate features y <- 1 + X %*% (10*runif(50) * (runif(50) < 0.1)) y <- 1 * (y - mean(y) >= rnorm(nobs)) # Estimate learners mdl_fit_reg <- mdl_ranger(y, X) mdl_fit_probability <- mdl_ranger(y, X, probability = TRUE) mdl_fit_classification <- mdl_ranger(y, X, classification = TRUE) # Check methods predict() fitted_reg <- predict(mdl_fit_reg, newdata = X) fitted_probability <- predict(mdl_fit_probability, newdata = X) expect_warning({ fitted_classification <- predict(mdl_fit_classification, newdata = X) }) # Check output with expectations expect_equal(length(fitted_reg), 100) expect_equal(length(fitted_probability), 100) })#TEST_THAT