test_that("ddml_att computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(what = ols) learners_DX <- list(what = mdl_glm) expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners = learners, learners_DX = learners_DX, cv_folds = 3, sample_folds = 3, silent = T) }) # Check output with expectations expect_equal(length(ddml_att_fit$att), 1) })#TEST_THAT test_that("ddml_att computes with an ensemble procedure", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute DDML PLM estimator expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners = learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, silent = T) }) # Check output with expectations expect_equal(length(ddml_att_fit$att), 1) })#TEST_THAT test_that("ddml_att computes w/ multiple ensembles + custom weights", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute DDML PLM estimator expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, custom_ensemble_weights = diag(1, 2), sample_folds = 3, silent = T) }) # Check output with expectations expect_equal(length(ddml_att_fit$att), 6) })#TEST_THAT test_that("ddml_att computes w/ multp ensembles, custom weights + shortstack", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute DDML PLM estimator expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners, ensemble_type = c("ols", "average"), shortstack = TRUE, cv_folds = 3, custom_ensemble_weights = diag(1, 2), sample_folds = 3, silent = T) }) # Check output with expectations expect_equal(length(ddml_att_fit$att), 4) })#TEST_THAT test_that("summary.ddml_att computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(what = ols) expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners = learners, cv_folds = 3, sample_folds = 3, silent = T) }) # Compute inference results & test print inf_res <- summary(ddml_att_fit) capture_output({print(inf_res)}, print = FALSE) # Check output with expectations expect_equal(length(inf_res), 4) })#TEST_THAT test_that("summary.ddml_att computes with multiple ensemble procedures", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols)) # Compute DDML PLM estimator expect_warning({ ddml_att_fit <- ddml_att(y, D, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) }) # Compute inference results & test print inf_res <- summary(ddml_att_fit) capture_output({print(inf_res)}, print = FALSE) # Check output with expectations expect_equal(length(inf_res), 16) })#TEST_THAT