test_that("ddml_ate computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(what = ols) ddml_ate_fit <- ddml_ate(y, D, X, learners = learners, cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_ate_fit$ate), 1) })#TEST_THAT test_that("ddml_ate computes with an ensemble procedure", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute DDML PLM estimator ddml_ate_fit <- ddml_ate(y, D, X, learners = learners, ensemble_type = "ols", cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_ate_fit$ate), 1) })#TEST_THAT test_that("ddml_ate computes w/ multiple ensembles + custom weights", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols), list(fun = ols)) # Compute DDML PLM estimator ddml_ate_fit <- ddml_ate(y, D, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, custom_ensemble_weights = diag(1, 2), sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_ate_fit$ate), 6) })#TEST_THAT test_that("ddml_ate computes with multiple ensemble procedures & shortstack", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols)) # Compute DDML PLM estimator ddml_ate_fit <- ddml_ate(y, D, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), shortstack = TRUE, cv_folds = 3, sample_folds = 3, silent = T) # Check output with expectations expect_equal(length(ddml_ate_fit$ate), 4) })#TEST_THAT test_that("summary.ddml_ate computes with a single model", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(what = ols) ddml_ate_fit <- ddml_ate(y, D, X, learners = learners, cv_folds = 3, sample_folds = 3, silent = T) capture_output({inf_res <- summary(ddml_ate_fit)}) # Check output with expectations expect_equal(length(inf_res), 4) })#TEST_THAT test_that("summary.ddml_ate computes with multiple ensemble procedures", { # Simulate small dataset nobs <- 200 X <- cbind(1, matrix(rnorm(nobs*39), nobs, 39)) D_tld <- X %*% runif(40) + rnorm(nobs) D <- 1 * (D_tld > mean(D_tld)) y <- D + X %*% runif(40) + rnorm(nobs) # Define arguments learners <- list(list(fun = ols)) # Compute DDML PLM estimator ddml_ate_fit <- ddml_ate(y, D, X, learners, ensemble_type = c("ols", "nnls", "singlebest", "average"), cv_folds = 3, sample_folds = 3, silent = T) capture_output({inf_res <- summary(ddml_ate_fit)}, print = FALSE) # Check output with expectations expect_equal(length(inf_res), 16) })#TEST_THAT